Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(M=x^4-xy^3+x^3y-y^4-1\)
\(M=\left(x^4-y^4\right)-\left(xy^3-x^3y\right)-1\)
\(M=\left(x^4-y^4\right)-xy\left(y^2-x^2\right)-1\)
Mà x+y=0
\(\Rightarrow x=-y\)
\(\Rightarrow M=\left[\left(-y\right)^4-y^4\right]-xy\left[y^2-\left(-y\right)^2\right]-1\)
\(M=\left(y^4-y^4\right)-xy\left(y^2-y^2\right)-1\)
\(M=0-0-1\)
\(M=-1\)
Ta có: x+y=0=> x=0; y=0
\(\Rightarrow M=x^4-x\times y^3+x^3\times y-y^4-1\)
\(\Rightarrow M=\left[x^4-\left(x^3+x\right)\right].\left[y^4-\left(y^3+y\right)\right]-1\)
\(\Rightarrow M=\left[x^4-x^4\right]\times\left[y^4-y^4\right]-1\)
\(\Rightarrow M=0\times0-1\)
\(\Rightarrow M=-1\)
Vậy M=-1
Choa ko chắc đâu nha
x+y+1=0 suy ra x+y=1
Làm câu A nhé B,C tương tự
A= x^2.(x+y-2)-(xy+y^2-2y)+(y+x-1)=0-y.(x+y-2)+1=1
Hok tốt
N= x4- xy3+ x3y-y4-1
N = (x^4 - y^4) - xy(y^2 - x^2) -1
N = (x^2 - y^2)(x^2 + y^2) - xy(y - x)(x + y) - 1
N = (x - y)(x + y)(x^2 + y^2) - xy(y - x)(x + y) - 1
x + y = 0
N = -1
a)\(A=x^3+x^2y-xy-y^2+3y+x-1\)
Ta có:\(x+y-2=0\Rightarrow x+y=2\)
\(A=x^2\left(x+y\right)-y\left(x+y\right)+3y+x-1\)
\(=2x^2-2y+3y+x-1\)
\(=2x^2+y+x-1\)
\(=2x^2+2-1\)
\(=2x^2+1\)
b) x - y = 0 => x = y
B = x( x^2 + y^2 ) - y ( x^2 + y^2 ) + 3
= x(x^2 + x^2 ) - x (x^2 + x^2 ) + 3
= 3
Lời giải:
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(=(x^3+x^2y-2x^2)-(xy+y^2-2y)+y+x-1\)
\(=x^2(x+y-2)-y(x+y-2)+(y+x-2)+1\)
\(=x^2.0-y.0+0+1=1\)
\(N=x^3-2x^2-xy^2+2xy+2y-2x-2\)
\(=(x^3-2x^2+x^2y)-(x^2y+xy^2-2xy)+2y+2x-4-4x+2\)
\(=x^2(x-2+y)-xy(x+y-2)+2(y+x-2)-4x+2\)
\(=x^2.0-xy.0+2.0-4x+2=2-4x\) (không tính được giá trị cụ thể, bạn thử xem lại đề)
\(P=(x^4+x^3y-2x^3)+(x^3y+x^2y^2-2x^2y)-x(x+y-2)\)
\(=x^3(x+y-2)+x^2y(x+y-2)-x(x+y-2)\)
\(=x^3.0+x^2y.0-x.0=0\)
bước đầu mình nhóm số hạng thứ nhất với thứ ba; số hạng thứ hai với thứ 4; sau đó sử dụng tính chất a.b + a.c = a(b+c)
nên ta có M = (x4 + x3y) - (xy3 + y4) - 1 = (x3. x + x3y) - (xy3 + y. y3) - 1 = x3.(x+y) - y3.(x+y) - 1
= x3. 0 - y3 .0 -1 = -1