K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

1 ) \(\frac{9x+9y}{10a-10b}=\frac{9\left(x+y\right)}{10\left(a-b\right)}=\frac{9}{10}.\frac{x+y}{a-b}=\frac{9}{10}.\frac{2}{3}=\frac{3}{5}\)

2 ) \(\left(-3x-y\right)=10\Rightarrow3x+y=-10\)

\(\Rightarrow2\left(3x+y\right)=2.\left(-10\right)\)

\(\Rightarrow6x+2y=-20\)

12 tháng 8 2016

3/5 nha ban

20 tháng 5 2019

Ta có : \(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\Leftrightarrow10ab+10ac+b^2+bc=10ab+10b^2+ca+cb\)

\(\Leftrightarrow\)9ac=9b2 \(\Leftrightarrow\)\(\frac{a}{b}=\frac{b}{c}\)

3 tháng 11 2015

Áp dụng t/ c của dãy tỉ số bằng nhau ta có: \(\frac{x+2}{y+3}=\frac{2}{3}=\frac{\left(x+2\right)-2}{\left(y+3\right)-3}=\frac{x}{y}\)

=> x = 2k; y = 3k (k khác 0)

=> A = \(\frac{13.\left(3k\right)^2-9.\left(2k\right)^2}{9.\left(3k\right)^2}=\frac{81k^2}{81k^2}=1\)

15 tháng 11 2019

Bài 2:

Từ \(\frac{ab}{bc}=\frac{b}{c}\) với \(c\ne0\Rightarrow\frac{ab}{b}=\frac{bc}{c}\) và a, b, c > 0, ta suy ra đc \(\frac{a}{b}=\frac{b}{c}\)

Đặt \(\frac{a}{b}=\frac{b}{c}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\b=ck\end{matrix}\right.\)

\(\frac{a^2+b^2}{b^2+c^2}=\frac{\left(bk\right)^2+b^2}{\left(ck\right)^2+c^2}=\frac{b^2\left(k^2+1\right)}{c^2\left(k^2+1\right)}=\frac{b^2}{c^2}=\frac{\left(ck\right)^2}{c^2}=k^2\)

\(\frac{a}{c}=\frac{bk}{c}=\frac{\left(ck\right)k}{c}=k^2\)

\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)

14 tháng 11 2019

Bài 2:

Chúc bạn học tốt!

1 tháng 9 2019

\(a+c=2b\Rightarrow2bd=ad+cd=c\left(b+d\right)=bc+cd\)

\(\Rightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Lúc đó: \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=2\left(\frac{10.bk+dk}{10b+d}\right)^2-\left(\frac{bk}{b}\right)^2\)

\(=2k^2-k^2=k^2\)(1)

và \(\left(\frac{c}{d}\right)^2=\left(\frac{dk}{d}\right)^2=k^2\)(2)

Từ (1) và (2) suy ra \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\)(đpcm)

3 tháng 12 2015

bài này làm như sau:

\(\frac{ab}{abc}=\frac{bc}{bca}=\frac{ca}{cab}=\frac{ab+bc+ca}{abc+bca+cab}=\frac{10a+b+10b+a+10c+a}{100a+10b+c+100b+10c+a+100c+10a+b}\)

\(=\frac{11a+11b+11c}{111a+111b+111c}=\frac{11\left(a+b+c\right)}{111\left(a+b+c\right)}=\frac{11}{111}\)

vậy k=11/111

****

3 tháng 12 2015

bn đăng câu hỏi j zợ chăng hiu

6 tháng 4 2016

=> (a-b)(10b+c) = (10a+b)(b-c)  => 10ab-10b2+ac-bc = 10ab-10ac+b2-bc   =>  10ab-10ab-10b2-b2 = -10ac-ac-bc+bc 

  => -10b2-b2 = -10ac-ac  =>   -11b2 = -11ac   => b2 = ac      => \(\frac{b}{a}=\frac{c}{b}\)