K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

=> (a-b)(10b+c) = (10a+b)(b-c)  => 10ab-10b2+ac-bc = 10ab-10ac+b2-bc   =>  10ab-10ab-10b2-b2 = -10ac-ac-bc+bc 

  => -10b2-b2 = -10ac-ac  =>   -11b2 = -11ac   => b2 = ac      => \(\frac{b}{a}=\frac{c}{b}\)

11 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\frac{a^{1994}}{b^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\)(1)

\(\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)(2)

từ (1) và (2) => \(\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\left(đpcm\right)\)

\(\)

12 tháng 11 2018

Nguyễn Thị Linh Chi: Em có cách khác ạ. (cách này em làm trên lớp thường ngày.Và cũng khác đơn giản ạ)

ĐK: b,d ≠ 0 ; b≠d

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\).Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\hept{\begin{cases}a=kc\\b=kd\end{cases}}\).Thay vào:

\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(kc+kd\right)^2}{k^2c^2+k^2d^2}=\frac{\left[k\left(c+d\right)\right]^2}{k^2\left(c^2+d^2\right)}=\frac{\left(c+d\right)^2}{c^2+d^2}^{\left(đpcm\right)}\) 

12 tháng 11 2018

\(a^2+b^2\)nha mn

12 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{3a^6}{3b^6}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{3a^6}{3b^6}=\frac{3a^6+c^6}{3b^6+d^6}\left(1\right)\)

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\left(2\right)\)

từ (1) và (2) => đpcm

11 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{2b}{2d}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)(vì \(\frac{a}{c}=\frac{b}{d}\))

\(\Rightarrow\frac{ab}{cd}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}\left(đpcm\right)\)

26 tháng 9 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Xét VT \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

Xét VP \(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

Từ (1) và (2) ->Đpcm

26 tháng 9 2016

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Xét : VT :

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(a\right)\)

Xé VP :
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(b\right)\)
Từ ( a ) và ( b )
=> Tỉ lệ thứ trên đúng 
=> ĐPCM

 

11 tháng 11 2018

 \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Ta có : \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)\(\Rightarrow\frac{\left(a+b\right)^3}{\left(c+d\right)^3}=\left(\frac{a+b}{c+d}\right)^3\)(1)

Ta lại có : \(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^3=\left(\frac{b}{d}\right)^3=\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3+b^3}{c^3+d^3}\)(2)

Từ (1) và (2) \(\Rightarrowđpcm\)

23 tháng 11 2019

\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)

1 tháng 9 2019

\(a+c=2b\Rightarrow2bd=ad+cd=c\left(b+d\right)=bc+cd\)

\(\Rightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Lúc đó: \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=2\left(\frac{10.bk+dk}{10b+d}\right)^2-\left(\frac{bk}{b}\right)^2\)

\(=2k^2-k^2=k^2\)(1)

và \(\left(\frac{c}{d}\right)^2=\left(\frac{dk}{d}\right)^2=k^2\)(2)

Từ (1) và (2) suy ra \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\)(đpcm)