\(2x^3-mx+n\) có hai nhân tử là \(x+2\) và ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

Cách 1 : Chia \(f(x)\)cho x2 + x + 1

Ta được dư là : \((2-a)x+(b+1-a)=r(x)\)

Ta có phép chia hết khi và chỉ khi \(r(x)=0\), tức là : \(\hept{\begin{cases}2-a=0\\b+1-a=0\end{cases}\Rightarrow}a=2,b=1\)

Cách 2 : Chú ý rằng \(f(x)\)bậc 3 , còn đa thức chia là bậc 2, nên thương phải là một nhị thức bậc nhất, có dạng x + k . Từ đó :

\((x+k)(x^2+x+1)=x^3+ax^2+2x+b\)

\(\Leftrightarrow x^3+ax^2+2x+b=x^3+(k+1)x^2+(k+1)x+k\)

Hệ số của các hạng tử cùng bậc phải bằng nhau , suy ra a = k + 1 ; 2 = k +  1 ; b = k. Từ đây ta có : k = 1 , a = 2 , b = 1

7 tháng 12 2017

\(\hept{\begin{cases}x-2=1\\x^2-5x+6=x-3\end{cases}}\)

\(\hept{\begin{cases}x=3\\x^2-6x+9=0\end{cases}}\)

\(\hept{\begin{cases}x=3\\\left(x-3\right)^2=0\end{cases}}\)phân tích nốt ra thì có x = 3 thỏa mãn

Bấm L IKE ủng hộ nhá :)))

\(\hept{\begin{cases}x=3\\\orbr{\begin{cases}x=3\\x=-3\end{cases}}\end{cases}}\)\(\hept{\begin{cases}x=3\\\orbr{\begin{cases}x=3\\x=-3\end{cases}}\end{cases}}\)

13 tháng 7 2015

cho tớ mỗi dấu cộng là 1 ví dụ nhé .tớ chưa hiểu lém 

22 tháng 6 2019

Trong app này có cả bộ đề thi + thi thử bạn thử xem nha! https://giaingay.com.vn/downapp.html

a: ĐK của A là x<>-3; x<>2

ĐKXĐ của B là x<>3

DKXĐ của C là x<>0; x<>4/3

ĐKXĐ của D là x<>-2

ĐKXĐ của E là x<>2; x<>-2

ĐKXĐ của F là x<>2

b,c:

\(A=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{2}{x-2}\)

Để A=0 thì 2=0(loại)

\(B=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-3\right)}=\dfrac{x+3}{x-3}\)

Để B=0 thì x+3=0

=>x=-3

\(C=\dfrac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\dfrac{3x+4}{x}\)

Để C=0 thì 3x+4=0

=>x=-4/3

\(D=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}=\dfrac{x+2}{2}\)

Để D=0 thì x+2=0

=>x=-2(loại)

\(E=\dfrac{x\left(2-x\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{-x}{x+2}\)

Để E=0 thì x=0

\(F=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)

Để F=0 thì 3=0(loại)

9 tháng 6 2019

a) Để giá trị phân thức dc xác định thì x2 -1 # 0 <=> x2 # 1 <=> x # 1 và x # -1 ( giải thích: vì muốn phân thức xác định thì mẫu thức phải khác 0)

(mình ko biết ghi dấu "khác" trong toán, nên ghi đỡ dấu thăng nha, sr bạn)

b) Ta có: x2 + 2x +1 / x2 -1 

       = (x + 1)2 / (x+1).(x-1)

       = (x+1).(x+1) / (x+1).(x-1)

       = x+1 / x-1

Vậy phân thức rút gọn của phân thức đã cho là x+1/ x-1

9 tháng 6 2019

de \(\frac{x^2+2x+1}{x^2-1}\)được xác định => x2-1 khác 0 => x khác +-1

\(\frac{x^2+2x+1}{x^2-1}=\frac{\left(x+1\right)^2}{\left(x+1\right).\left(x-1\right)}=\frac{x+1}{x-1}\)

9 tháng 11 2018

a) ĐK \(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\\x\ne0\end{matrix}\right.\)

b) \(A=\left(\dfrac{x}{x-3}-\dfrac{x}{x+3}\right).\dfrac{x^2+6x+9}{6x}\)

\(A=\dfrac{x\left(x+3\right)-x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(x-3\right)^2}{6x}\)

\(A=\dfrac{6x}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(x-3\right)^2}{6x}=\dfrac{x-3}{x+3}\)

c) \(A=\dfrac{x-3}{x+3}=\dfrac{x+3-6}{x+3}=1-\dfrac{6}{x+3}\)

Để A nguyên khi \(6⋮\left(x+3\right)\Rightarrow\left(x+3\right)\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

Để A là nguyên dương thì \(\dfrac{6}{x+3}< 1\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=-1\\x+3=-2\\x+3=-3\\x+3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-5\\x=-6\\x=-9\end{matrix}\right.\)

10 tháng 6 2017

Bài 1:

a, \(x^2-x-12\)

\(=x^2-4x+3x-12=\left(x^2-4x\right)+\left(3x-12\right)\)

\(=x.\left(x-4\right)+3.\left(x-4\right)=\left(x-4\right).\left(x+3\right)\)

b, \(x^2+8x+15\)

\(=x^2+3x+5x+15=\left(x^2+3x\right)+\left(5x+15\right)\)

\(=x.\left(x+3\right)+5.\left(x+3\right)=\left(x+3\right).\left(x+5\right)\)

c, \(x^{16}+x^8-2\)

\(=x^{16}-x^8+2x^8-2=\left(x^{16}-x^8\right)+\left(2x^8-2\right)\)

\(=x^8.\left(x^8-1\right)+2.\left(x^8-1\right)=\left(x^8-1\right)\left(x^8+2\right)\)

d, \(x^2+7x+12\)

\(=x^2+3x+4x+12=\left(x^2+3x\right)+\left(4x+12\right)\)

\(=x.\left(x+3\right)+4.\left(x+3\right)=\left(x+3\right).\left(x+4\right)\)

Chúc bạn học tốt!!!

10 tháng 6 2017

1,2,4 sử dụng Casio