Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,b,c là số đo các cạnh của tam giác nên là các số dương, dễ thấy x>y;z
nếu x;y;z là số đo các cạnh của 1 tam giác vuông khác thì x là cạnh huyền
ta xét x2=y2+z2 <=> \(\left(9a+4b+8c\right)^2=\left(4a+b+4c\right)^2+\left(8a+4b+7c\right)^2\)
<=> 81a2+16b2+64c2+72ab+64bc+144ca=80a2+17b2+65c2+72ab+64bc+144ca
<=>a2=b2+c2(đúng do a;b;c là số đo 3 cạnh của 1 tam giác vuông với a độ dài là cạnh huyền,áp dụng định lý Pytago)
Ta đã chứng minh được : x2=y2+z2 .Theo định lý Pytago đảo suy ra x;y;z cũng là số đo 3 cạnh của 1 tam giác vuông
Ta có a,b,c là số đo các cạnh của tam giác nên là các số dương.
Ta thấy x>y;z
Nếu x;y;z là số đo các cạnh của 1 tam giác vuông khác thì x là cạnh huyền
Xét x^2=y^2+z^2 <=>( 9a + 4b + 8c)^2 = (4a + b + 4c)^2+ (8a + 4b + 7c)^2
<=> 81a^2+64c^2+72ab+64bc+144ca=80a^2+17b2^+65c^2+72ab+64bc+144ca
<=>a^2=b^2+c^2
do a;b;c là số đo 3 cạnh của 1 tam giác vuông với a độ dài là cạnh huyền,
Áp dụng định lý Pytago.Ta chứng minh được :
x^2=y^2+z^2
=> x;y;z là số đo 3 cạnh của 1 tam giác vuông (Theo định lý Pytago đảo )
NHỚ TK MK NHALưu Đức Mạnh
tính đc x^2-y^2-z^2=a^2-^b^2-c^2
mà a^2=b^2+c^2
suy ra x^2-y^2-z^2=0
suy ra x^2=y^2+z^2
vậy x;y;z là đọ dài của tam giác vuông
---------------------------------------------------------------------
li-ke cho mình nhé bnQuynh Anh Quach
Gọi x; y; z là độ dài ba cạnh tam giác vuông với z là cạnh huyền thì theo đề bài,ta có:
\(z>y\ge x\ge1\) và
\(\hept{\begin{cases}x^2+y^2=z^2\left(\text{Định lí Pythagoras}\right)\\\frac{xy}{2}=x+y+z\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy=z^2\left(1\right)\\xy=2\left(x+y+z\right)\left(2\right)\end{cases}}\)
Thay (2) lên (1) suy ra \(z^2=\left(x+y\right)^2-4\left(x+y+z\right)\)
\(\Leftrightarrow z^2+4z=\left(x+y\right)^2-4\left(x+y\right)\)
\(\Leftrightarrow z^2+4z+4=\left(x+y\right)^2-4\left(x+y\right)+4\)
\(\Leftrightarrow\left(z+2\right)^2=\left(x+y-2\right)^2\) (*)
Do \(z>y\ge x\ge1\) nên cả hai vế cùng không âm.
Do đó từ (*) suy ra \(z+2=x+y-2\Leftrightarrow z=x+y-4\)
Thay ngược lên (2) và giải tiếp bằng cách phân tích đa thức thành nhân tử và lập bảng xét ước:P.
Note: Em không chắc đâu ạ!
Vì m, n, p là độ dài 3 cạnh tam giác vuông (p là cạnh huyền) nên
p2 = m2 + n2
Ta có: a2 - b2 - c2 = (4m + 8n + 9p)2 - (m + 4n + 4p)2 - (4m + 7n + 8p)2
= - n2 + p2 - m2 = 0
=> a2 = b2 + c2
Vậy a, b, c cũng là độ dài ba cạnh tam giác vuông. Và cạnh huyền là a
olm mootj trang web mat day nhat hanh tinh dot nhien tru 20 diem ma khong lien quan j khong tra loi cau hoi linh tinh ma cung tru diem mat day : bo lao
Thiếu đề bạn ơi