K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

A = a3 + b3 + c- 3abc

= (a+b)3 - 3ab(a+b) + c3 - 3abc

= (a+b+c)(a2 + 2ab + b2 -ac -bc + c2) - 3ab (a+b+c)

=(a+b+c)(a2 + b2 + c2 - ab - bc - ac)

a+ b + c > 0    (dựa giả thiết)

a2 + b2 + c2 - ab - bc - ac > 0    (*)

Chứng minh (*)

\(a^2+b^2+c^2-ab-bc-ac=\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\)

16 tháng 3 2017

A = a3 + b3 + c3 - 3abc

A = (a + b + c).(a2 + b2 + c2 - ab - bc - ca)

Bây giờ, ta chỉ cần c/m a2 + b2 + c2 - ab - bc - ca > 0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca > 0

<=> (a - b)2 + (b - c)2 + (c - a)2 > 0, luôn đúng với a;b;c là các số đôi một khác nhau

Vậy ta có đcpm

30 tháng 7 2017

Ta có : a^3+b^3+c^3=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)+3.a.b.c=3.a.b.c

                             =(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)=0

Ta thấy:a,b,c là số dương nên a+b+c khác 0 suy ra (a^2+b^2+c^2-a.b-b.c-a.c) =0 nên a=b=c

Vậy a=b=c


 

1 tháng 10 2020

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2+ac+bc+c^2-3ab\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\left(a+b+c>0\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Rightarrow a=b=c}\)

30 tháng 7 2018

Ta có a^3 + b^3 + c^3 = (a+b+c). (a^2+b^2+c^2-a.b-b.c-a.c)+3abc= 3abc

                                = (a+b+c)(a^2+b^2+c^2-a.b-b.c-a.c)=0

Ta Thấy a,b,c là số dương nên a+b+c khác 0 suy ra ( a^2+b^2+c^2-a.b-b.c-a.c)=0 Nên a=b=c

- k Mình Nhé 

30 tháng 7 2018

Ta có: a3 + b3 + c3 = 3abc

<=> a3 + b3 + c3 − 3abc = 0

<=> (a + b + c) (a2 + b2 + c2 − ab − bc − ca) = 0

<=> a2 + b2 + c2 − ab − bc − ca = 0 (do a + b + c > 0)

<=> 1/2(2a2 + 2b2 + 2c2 − 2ab − 2bc − 2ca) = 0

<=> a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ac + a2 = 0 

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> a − b = b − c = c − a = 0

<=> a = b = c 

27 tháng 9 2015

bạn sủa lại đề đi: z=(a-b+c)2+8ac

x+y+z=3(a-b+c)2+8ab+8bc-8ac

x+y+z=3(a2+b2+c2-2ab+2ac-2bc)+8ab+8bc-8ac

x+y+z=3a2+b2+3c2+2bc+2ab-2ac

         =(a+b)2+(b+c)2+(a-c)2+a2+b2+c>0

Vậy.../

 

8 tháng 3 2017

GT không hợp lí 

Theo định lí cosi 3 số

a^3+b^3+c^3>=3*canbacba(a^3*b^3*c^3)

<=> a^3+b^3+c^3>=3abc

dấu"=" khi a=b=c

trái Gt a,b,c đôi một khác nhau

12 tháng 3 2017

Bạn sai rồi. Sao ngu vậy. Giải đến thế mà ko làm ra

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu bằng xảy ra \(\Leftrightarrow a=b=c\)

ta có : \(a^3+b^3+c^3=3abc\Rightarrow a=b=c\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=2.2.2=8\)

6 tháng 2 2019

o0o I am a studious person o0o: Theo em thì: \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\orbr{\begin{cases}a=b=c\\a+b+c=0\end{cases}}\) chứ ạ?