K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2018

1,Áp dụng hằng đẳng thức ( hình như bn viết sai)

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

2, I am stupid so I don't know.

AH
Akai Haruma
Giáo viên
22 tháng 6 2019

Bài 1:

Bạn tham khảo tại link sau:

Câu hỏi của hậuu đậuu - Toán lớp 8 | Học trực tuyến

Bài 2:

Ta có:

\(a^3+b^3+c^2-3abc=0\)

\(\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0\)

\(\Leftrightarrow [(a+b)^3+c^3]-3ab(a+b+c)=0\)

\(=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)=0\)

\(\Leftrightarrow (a+b+c)[(a+b)^2-(a+b)c+c^2-3ab]=0\)

\(\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\)

Vì $a,b,c$ là 3 số dương nên $a+b+c>0$ . Suy ra $a+b+c\neq 0$

\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)

\((a-b)^2; (b-c)^2; (c-a)^2\geq 0, \forall a,b,c>0\). Do đó để tổng của chúng bằng $0$ thì \((a-b)^2=(b-c)^2=(c-a)^2=0\)

\(\Rightarrow a=b=c\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
22 tháng 6 2019

Bài 3:

Áp dụng công thức \((a-b)(a+b)=a^2-b^2\):

\(C=(3+2)(3^2+2^2)(3^4+2^4)(3^8+2^8)(3^{16}+2^{16})\)

\(=(3-2)(3+2)(3^2+2^2)(3^4+2^4)(3^8+2^8)(3^{16}+2^{16})\)

\(=(3^2-2^2)(3^2+2^2)(3^4+2^4)(3^8+2^8)(3^{16}+2^{16})\)

\(=(3^4-2^4)(3^4+2^4)(3^8+2^8)(3^{16}+2^{16})\)

\(=(3^8-2^8)(3^8+2^8)(3^{16}+2^{16})\)

\(=(3^{16}-2^{16})(3^{16}+2^{16})=3^{32}-2^{32}\)

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

25 tháng 7 2016

1, 

\(a,7x-6x^2-2=-6x^2+7x-2=-6x^2+3x+4x-2\)

\(=-3x\left(2x-1\right)+2\left(2x-1\right)=\left(2x-1\right)\left(2-3x\right)\)

\(b,2x^2+3x-5=2x^2-2x+5x-5\)

\(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)

\(c,16x-5x^2-3=-5x^2+x+15x-3\)

\(=-x\left(5x-1\right)+3\left(5x-1\right)=\left(5x-1\right)\left(3-x\right)\)

2,

\(a+b+c=0=>a+b=-c=>\left(a+b\right)^3=\left(-c\right)^3\)

\(=>a^3+b^3+3a^2b+3ab^2=-c^3\)

\(=>a^3+b^3+c^3=-3ab\left(a+b\right)\)

\(=>a^3+b^3+c^3=-3ab\left(-c\right)=3abc\)(vì a+b=-c)

3 tháng 9 2018

\(2x^2+3x-5\)

\(=2x^2-2x+5x-5\)

\(=2x\left(x-1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(2x+5\right)\)

28 tháng 9 2016

Bài 1 :

a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

b) \(x^3-x+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

28 tháng 9 2016

Đã có kết quả

Bài 1,chữa phần a

 xy(x+y)+yz(y+z)+xz(x+z)+2xyz

=[xy(x+y)+xyz]+[yz(y+z)+xyz]+xz(x+z)

=xy(x+y+z)+yz(x+y+z)+xz(x+z)

=y(x+y+z)(x+z)+xz(x+z)

=(x+z)(xy+y2+yz+xz)

=(x+z)(x+y)(y+z)

Chữa phần b

x3-x+3x2y+3xy2+y3-y

=(x+y)(x+y-1)(x+y+1)

Bài2

a3+b3+c3=(a+b)3-3ab(a+b)+c3=-c3-3ab(-c)+c3=3abc

Ai làm đúng như này ớ sẽ k