Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ƯCLN ( a ; b ) = 24
=> a = 24 . q1
=> b = 24 . q2 . Với ƯCLN ( q1 ; q2 ) = 1
Ta có : a + b = 192
=> 24 . q1 + 24 . q2 = 192
=> 24 . ( q1 + q2 ) = 192
=> q1 + q2 = 192 : 24 = 8
mà ƯCLN ( q1 ; q2 ) = 1
=> q1 = 1 => a = 24 . 1 = 24
q2 = 7 => b = 24 . 7 = 168
hoặc q1 = 3 => a = 24 . 3 = 72
q2 = 5 => b = 24 . 5 = 120
ta có \(UCLN\left(a,b\right)\le a,b\)\(\Rightarrow UCLN\left(a,b\right)\le a+b\) điều này mâu thuẫn với giả thiết
\(\hept{\begin{cases}a+b=8\\UCLN\left(a,b\right)=9\end{cases}}\) vậy không tồn tại hai số a,b thỏa mãn
b. ta có \(UCLN\left(a,b\right)=6\Rightarrow\hept{\begin{cases}a=6k\\b=6h\end{cases}}\)với h,k nguyên tố cùng nhau
\(a.b=36h.k=720\Leftrightarrow hk=20=1.2^2.5\) nên \(\left(h,k\right)=\left(1,20\right)\text{ hoặc (4,5)}\)
vậy tương ứng ta có hai bộ số là 6,120 và 24,30 thỏa mãn đề bài
Tham khảo câu 1
Câu hỏi của Cặp đôi ngọt ngào - Toán lớp 6 - Học toán với OnlineMath
Bài 1:
a. Gọi d là ƯCLN(n+2, n+3). Khi đó:
$n+2\vdots d; n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+1, 9n+4)$
$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$
$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.
Bài 2:
a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đó: $a+b=24x+24y=192$
$\Rightarrow 24(x+y)=192$
$\Rightarrow x+y=8$
Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$
$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$
a. (a,b)=(1,7),(2,6),(3,5),(4,4), (5,3),(6,2), (7,1), (0,8), (8,0)
b.(a,b)=(6,36),(12,18),(18,12),(36,6)
Sao no kieu sai sai vay troi?