K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2015

3m2+m=4n2+n

=>(m-n)(4m+4n+1)=m2(1)(phân tích ra là về cái ban đầu nhé)

Gọi d là 1 ước chung của m-n và 4m+4n+1

=>(m-n)(4m+4n+1) chia hết cho d.d=d2

Từ (1) =>m2 chia hết cho d2

=>m chia hết cho d

Mà m-n cũng chia hết cho d => n chia hết cho d

=>4m+4n+1 chia d dư 1(vô lí vì d được giả sử là ước của 4m+4n+1)

=>4m+4n+1 và m-n nguyên tố cùng nhau

 khi phân tích a hoặc b có thừa số nguyên tố p với mũ lẻ mà 2 số này nguyên tố cùng nhau nên số còn lại không chưa p =>m2 bằng tích của p với 1 số khác p.Mà m2 là số chính phương nên điều trên là vô lí

=>m-n và 4m+4n+1 phải cùng là số chính phương(ĐPCM)

Hơi khó hiểu nhưng đúng đó Đây là mình cố giải thích cho bạn chứ thực ra k có dòng giải thích dài dài kia đâu

25 tháng 2 2018

Khó lắm

29 tháng 3 2015

giải :

Ta có : 3m2 + m = 4n2 + n 
tương đương với 4(m2 - n2) + (m - n) = m2 
hay là (m - n)(4m + 4n + 1) = m2 (*)

Gọi d là ước chung lớn nhất của m - n và 4m + 4n + 1 thì (4m + 4n + 1) + 4(m - n) chia hết cho d => 8m + 1 chí hết cho d.

Mặt khác, từ (*) ta có : m2 chia hết cho d2 => m chia hết cho d.

Từ 8m + 1 chia hết cho d và m chia hết cho d ta có 1 chia hết cho d => d = 1.

Vậy m - n và 4m + 4n + 1 là các số tự nhiên nguyên tố cùng nhau, thỏa mãn (*) nên chúng đều là các số chính phương. 

29 tháng 3 2015

câu trả lời này ở trên mạng đó!!!!

23 tháng 3 2015

ta có: n2 là số chính phương 

=> n2 chia 4 dư 1 hoặc 0

nếu n2 chia 4 dư 0 => 2002+n2 chia 4 dư 2

=> 2002+n2 ko phải scp

nếu n2 chia 4 dư 1=> 2002+n2 chia 4 dư 3

=> 2002+nko phải scp

vậy ko tồn tại n số tự nhiên n để 2002+n2 là scp

15 tháng 12 2017

ta có: n
2
là số chính phương
=> n
2 chia 4 dư 1 hoặc 0
nếu n
2 chia 4 dư 0 => 2002+n
2 chia 4 dư 2
=> 2002+n
2 ko phải scp
nếu n
2 chia 4 dư 1=> 2002+n
2 chia 4 dư 3
=> 2002+n
2 ko phải scp
vậy ko tồn tại n số tự nhiên n để 2002+n
2
là scp

chúc bn hok tốt @_@

13 tháng 11 2015

Không có:)) Mình nghĩ vậy!

15 tháng 1 2017

bạn lấy căn 2015 ra => kog có.

15 tháng 1 2017

not có

19 tháng 12 2015

Giả sử a2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 (A thuộc Z) <=> a2 - n2 = 2006

<=> (A - n)(a + n) = 2006 (*)

Thấy a,n khác tính chẵn lẻ thì vế trái của (*) là số lẻ nên không thõa mãn (*)

Nếu a,n cùng tính chẵn hoặc lẻ thì (A - n) chia hết cho 2 và (a + n) chia hết cho 2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thõa mãn (*)

Vậy không tồn tại n để n2 + 2006 là số chính phương 

11 tháng 6 2021

a) Đặt A = 20184n + 20194n + 20204n

= (20184)n + (20194)n + (20204)n

= (....6)n + (....1)n + (....0)n

= (...6) + (...1) + (...0) = (....7) 

=> A không là số chính phương

b) Đặt 1995 + n = a2 (1) 

2014 + n = b2 (2)

a;b \(\inℤ\)

=> (2004 + n) - (1995 + n) = b2 - a2

=> b2 - a2 = 9

=> b2 - ab + ab - a2 = 9

=> b(b - a) + a(b - a) = 9

=> (b + a)(b - a) = 9

Lập bảng xét các trường hợp

b - a19-1-93-3
b + a91-9-1-33
a-444-4-33
b55-5-500

Từ a;b tìm được thay vào (1)(2) ta được 

n = -1979 ; n = -2014 ;