Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhiệt độ của nước đá đang tan là 00C, vì sau khi có cân bằng nhiệt hỗn hợp bao gồm cả nước và nước đá nên nhiệt độ của nó cũng là 00C.
Nhiệt lượng mà nước (350C) đã tỏa ra:
Qtỏa = mc (t1 – t0) = 1,5.4200.30 = 189 000 J
Gọi x là khối lượng nước đá đã bị nóng chảy. Nhiệt lượng mà nước đá thu vào để nóng chảy là:
Qthu = \(x.\lambda\) = 340000.x
Áp dụng phương trình cân bằng nhiệt:
Qtỏa = Qthu => 340 000 x = 189 000: 340 000 = 0,55 kg
Vậy khối lượng nước đá ban đầu là: 0,45 + 0,55 = 1,0 kg
Nhiệt độ nước đá đang tan là 0 độ c, vì sau khi có cân bằng nhiệt hỗn hợp bao gồm cả nước và nước đá nên nhiệt độ của nó cũng là 0 độ c
Nhiệt lượng mà nước ở 30 độ c đã toả ra:
Q1 = m.c. ∆t = 1,5.4200.30 = 189000J
Gọi x (kg) là khối lượng nước đá bị nóng chảy
Nhiệt lượng mà nước đá thu vào để nóng chảy là
Q2 = λ .x = x.3,4.105 J
Áp dụng phương trình cân bằng nhiệt lượng:
Q1=Q2<=> 189000=x.3,4.105 => x=0,55kg
Vậy khối lượng nước đá ban đầu là: 0,45+0,55=1kg
Nhiệt độ của nước khi cân bằng nhiệt
- Khối lượng của nước trong bình là:
\(m_1=V_1.D_1=\)\(\left(\pi.R^2_1.R_2-\frac{1}{2}.\frac{3}{4}\pi R^3_2\right)\)\(.D_1\approx10,467\left(kg\right)\)
- Khối lượng của quả cầu là: \(m_2=V_2.D_2=\frac{4}{3}\pi R^3_2.D_2\)\(=11,304\left(kg\right)\)
- Phương trình cân bằng nhiệt: \(c_1m_1\left(t-t_1\right)=c_2m_2\left(t_2-t\right)\)
Suy ra : \(t=\frac{c_1m_1t_1+c_2m_2t_2}{c_1m_1+c_2m_2}\)\(=23,7^oC\)
- Thể tích của dầu và nước bằng nhau nên khối lượng của dầu là:
\(m_3=\frac{m_1D_3}{D_1}=8,37\left(kg\right)\)
- Tương tự như trên, nhiệt độ của hệ khi cân bằng nhiệt là:
\(t_x=\frac{c_1m_1t_1+c_2m_2t_2+c_3m_3t_3}{c_1m_1+c_2m_2+c_3m_3}\)\(\approx21^oC\)
- Áp lực của quả cầu lên đáy bình là:
\(F=P_2-FA=10.m_2-\frac{1}{2}.\frac{4}{3}\pi R^3_2\)\(\left(D_1+D_3\right).10\approx75,4\left(N\right)\)
tại sao thể tích nước lại là tích của tết diện với bán kính quả cầu trừ đi thể tích nửa quả cầu
Tóm tắt:
Nhôm m1 = 0,5kg
c1 = 880J/kg.K
Nước m2 = 2kg
c2 = 4200J/kg.K
t1 = 250C
t2 = 1000C
t = 20' = 1200 s
Qhp = 30%.Qtỏa
P (hoa) = ?
Giải:
Nhiệt lượng cần để tăng nhiệt độ của ấm nhôm từ 250C tới 1000C là:
Q1 = m1c1 ( t2 – t1 ) = 0,5.880.(100 – 25 ) = 33000 ( J )
Nhiệt lượng cần để tăng nhiệt độ của nước từ 250C tới 1000C là:
Q2 = mc ( t2 – t1 ) = 2.4200.( 100 – 25 ) = 630000 ( J )
Nhiệt lượng tổng cộng cần thiết:
Q = Q1 + Q2 = 663000 ( J ) (1)
Mặt khác nhiệt lượng có ích để đun nước do ấm điện cung cấp trong thời gian 20 phút là:
\(H=\frac{Q}{Q_{tp}}\Rightarrow Q=Q_{tp}.H\)
mà Qtp = A = P.t => \(Q=H.P.t\Rightarrow P=\frac{Q}{H.t}\) (2)
Tính hiệu suất: H = 100% - 30% = 70%
Từ ( 1 ) và ( 2 ) : P = \(\frac{Q}{H.t}=\frac{663000.100}{70.1200}=789,3\left(W\right)\)
Nhiệt lượng cần để tăng nhiệt độ của ấm nhôm từ 25oC tới 100oC là:
\(Q_1=m_1.c_1\left(t_2-t_1\right)=0,5.880.100-25=33000\left(J\right)\)
Nhiệt lượng cần để tăng nhiệt độ của nước từ 25oC tới 100oC là:
\(Q_2=m.c\left(t_2-t_1\right)=2.4200.\left(100-25\right)=630000\left(J\right)\)
Nhiệt lượng tổng cộng cần thiết:
\(Q=Q_1+Q_2=33000+630000=663000\left(J\right)\) (1)
Mặt khác nhiệt lượng có ích để đun nước do ấm điện cung cấp trong thời gian 20 phút là:
\(H=\frac{Q}{Q_{tp}}\Rightarrow Q=H.Q_{tp}\)
Ta lại có: \(Q_{tp}=A=P.t\)
\(\Rightarrow Q=H.P.t\Rightarrow P=\frac{Q}{H.t}\) (2)
Tính hiệu suất:
\(\text{H = 100% - 30% = 70%}\)
Từ (1) và (2) \(\Rightarrow P=\frac{Q}{H.t}=\frac{663000.100}{70.1200}=789,3\left(W\right)\)
Bạn tham khảo nhé!
a. Nhiệt lượng nước đá thu vào để tăng nhiệt độ từ -100C đến 00C
Q1 = m1C1(t2 - t1) = 3600(J)
Nhiệt lượng nước đá thu vào để nóng chảy hoàn toàn ở 00C
Q2 = m1.λ = 68000 (J)
Nhiệt lượng nước thu vào để tăng nhiệt độ từ 00C đến 1000C
Q3 = m3C2(t3 - t2) = 84000(J)
Nhiệt lượng nước thu vào để hóa hơi hoàn toàn ở 1000C
Q4 = m1.L = 460000 (J)
Nhiệt lượng cần cung cấp trong suốt quá trình là:
Qtổng = Q1 + Q2 + Q3 + Q4 = 3600 + 68000 + 84000 + 460000 = 615600 (J)
Vậy nhiệt lượng cần cung cấp để nước đá biến thành hơi hoàn toàn ở 100oC là 615600 J.
b) Gọi m là lượng nước đá đã tan: m = 200 - 50 = 150 g = 0,15 kg
Do nước đá tan không hết nên nhiệt độ cuối cùng của hỗn hợp là 0oC.
Nhiệt lượng mà m (kg) nước đá thu vào để nóng chảy là:
Q' = m.λ = 51000 (J)
Nhiệt lượng do m' kg nước và xô nhôm tỏa ra để giảm xuống từ 20oC đến 0oC là:
Q" = (m'.c2 + mnhôm.cnhôm).(20 - 0)
Áp dụng phương trình cân bằng nhiệt:
Q" = Q' + Q1
⇔ (m'.c2 + mnhôm.cnhôm).(20 - 0) = 51000 + 3600
⇔ m'.4200 + 88 = 2730
⇔ m'.4200 = 2642
⇒m' = (kg).
Vậy lượng nước đã có sẵn trong xô lúc ban đầu là 1321/2100kg.
+, Khi có sự cân bằng nhiệt lần thứ nhất, nhiệt độ cân bằng của hệ là tt, ta có:
m.c1.(t−t1)=m.c2.(t2−t)m.c1.(t−t1)=m.c2.(t2−t) (1)
mà t=t2−9,t1=23oC,c1=900J/kg.K;c2=4200J/kg.Kt=t2−9,t1=23oC,c1=900J/kg.K;c2=4200J/kg.K thay vào (1) ta có:
900.(t2−9−23)=4200.(t2−t2+9)900.(t2−9−23)=4200.(t2−t2+9)
⟺900.(t2−32)=4200.9⟺900.(t2−32)=4200.9
⟹t2=74oC⟹t2=74oC và t=74−9=65oCt=74−9=65oC
Khi có sự cân bằng nhiệt lần thứ 2, nhiệt độ cân bằng của hệ là t′t′,ta có:
2m.c.(t′−t3)=(mc1+mc2).(t−t′)2m.c.(t′−t3)=(mc1+mc2).(t−t′) (2)
mà t′=t−10=55,t3=45oCt′=t−10=55,t3=45oC
Thay vào (2) ta có:
2.c.(55−45)=(900+4200).(65−55)2.c.(55−45)=(900+4200).(65−55)
⟹c=2550J/kg.K⟹c=2550J/kg.K
Nguồn : diendan.hocmai.vn