Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài HCN là 3a và chiều rộng HCN là a (a > 0)
Theo bài ra, ta có: \(\left(3a+5\right)\left(a+5\right)=180\)
\(\Leftrightarrow3a^2+20a+25=153\)
\(\Leftrightarrow3a+20a+25-153=153-153\)
\(\Leftrightarrow3a^2+20a-128=0\)
\(\Leftrightarrow3a^2+32a-12a-128=0\)
\(\Leftrightarrow a\left(3a+32\right)-4\left(3a+32\right)=0\)
\(\Leftrightarrow\left(a-4\right)\left(3a+32\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=4\left(t/m\right)\\a=-\frac{32}{3}\left(loai\right)\end{cases}}\)
\(a=4\Rightarrow3a=12\) (thỏa mãn)
Vậy hình chữ nhật đó có chiều dài 12 cm và chiều rộng 4 cm.
Chúc bạn học tốt.
Lời giải:
Gọi chiều dài và chiều rộng của hcn ban đầu lần lượt là $a,b$ (cm)
Theo bài ra ta có:
Diện tích ban đầu: $ab$ (cm2)
Diện tích sau khi thay đổi: $(a-2,4)b.1,3$ (cm2)
\((a-2,4)b.1,3=ab.1,04\)
\(\Leftrightarrow 1,3ab-3,12b=1,04ab\)
\(\Leftrightarrow 0,26ab=3,12b\)
\(\Leftrightarrow b(0,26a-3,12)=0\)
$\Leftrightarrow 0,26a-3,12=0$ (do $b\neq 0$)
$\Leftrightarrow a=12$ (cm)
Vậy chiều dài ban đầu là $12$ cm
Lời giải:
Gọi chiều rộng khu vườn là $a$ (m) thì chiều dài là $3a$ (m)
Diện tích ban đầu: $a.3a=3a^2$ (m2)
Diện tích sau khi đổi: $(a+5)(3a+5)$ (m2)
Có: $(a+5)(3a+5)-3a^2=385$
$\Leftrightarrow 20a+25=385$
$\Rightarrow a=18$ (m)
Vậy chiều rộng ban đầu là 18 m và chiều dài là $18.3=54$ m
gọi x và y lần lượt là chiều dài và chiều rộng của HCN(x>y>0)
từ đề bài ta có x=3y và (x+5)(y+5)=385+xy
ta có pt xy+5x+5y+25=385+xy
<=>20x=360
<=>x=18
=>y=x:3=18:3=6
vậy...
gợi a là chiều rộng
=> 3a là chiều dài
theo bài ra ta có pt: (3a-5).(a+2)-10=3a^2
<=>3a^2-5a+6a-10-10=3a^2
<=>a=20
<=>3a=60
vậy chiều dài là 60cm;chiều rộng là 20 cm
Gọi chiều rộng là x
=>Chiều dài là 3x
Theo đề, ta có: (x+5)(3x+5)=135
=>3x^2+5x+15x+25-135=0
=>3x^2+20x-110=0
=>\(x=\dfrac{-10+\sqrt{430}}{3}\)
=>Chiều dài ban đầu là (-10+căn 430)(cm)
Chu vi ban đầu là:
\(\left(-10+\sqrt{430}-\dfrac{10}{3}+\dfrac{1}{3}\cdot\sqrt{430}\right)\cdot2\)
\(=\left(-\dfrac{40}{3}+\dfrac{4}{3}\cdot\sqrt{430}\right)\cdot2\)
\(=\dfrac{-20}{3}+\dfrac{2}{3}\cdot\sqrt{430}\left(cm\right)\)
Gọi chiều rộng là x (m) (x > 0)
=> chiều dài là 3x (m)
Theo bài ra ta có:
(x + 5)(3x - 10) = x.3x
<=> 3x² - 10x + 15x - 50 = 3x²
<=> 5x - 50 = 0
<=> x = 10 (nhận)
=> chiều rộng = 10m
chiều dài = 3. 10 = 30 m
Gọi chiều rộng ban đầu là x(cm)(Điều kiện: x>0)
Chiều dài ban đầu là: 2x(cm)
Vì khi chiều rộng tăng 2cm thì diện tích tăng 4cm2 nên ta có phương trình:
\(2x\cdot\left(x+2\right)=2x^2+4\)
\(\Leftrightarrow2x^2+4x-2x^2-4=0\)
\(\Leftrightarrow4x=4\)
hay x=1(thỏa ĐK)
Chiều dài ban đầu là: \(2\cdot1=2\left(cm\right)\)
Vậy: Chiều rộng ban đầu là 1cm
Chiều dài ban đầu là 2cm