K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Quan sát hình vẽ ta thấy:

- Các cạnh tương ứng bằng nhau.

- Các góc tương ứng bằng nhau.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Ba góc tại mỗi đỉnh chung của ba tam giác tạo thành góc bẹt

Do đó, tổng của chúng bằng 180 độ.

Ta thấy ba điểm A, B, C thẳng hàng.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP}\) (gt)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

24 tháng 12 2017

Bài này ở đề thi Olympic đúng k bn ?

23 tháng 12 2017

20 điểm

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét tam giác MNP có:

\(\begin{array}{l}\widehat M + \widehat N + \widehat P = {180^o}\\ \Rightarrow \widehat M + {50^o} + {70^o} = {180^o}\\ \Rightarrow \widehat M = {60^o}\end{array}\)

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP} (=60^0)\)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

10 tháng 1 2018

ai lam cho minh k

10 tháng 1 2018

2 diem

20 tháng 4 2017

Xem hình a) ta có:

\(\widehat{A}=\widehat{I}=80^0\) ; \(\widehat{C}=\widehat{N}=30^0\)

\(\widehat{B}=\widehat{M}=180^0-\left(80^0+30^0\right)=70^0\)

Và AB=MI, AC=IN, BC=MN.

nên ∆ABC=∆IMN

Xem hình b) ta có:

\(\widehat{Q}_2=\widehat{R}_2=80^0\)=800 (ở vị trí so le trong)

Nên QH// RP

Nên \(\widehat{R}_1=\widehat{Q}_1\)= 600(so le trong)

\(\widehat{P}=\widehat{H}\)= 400

và QH= RP, HR= PQ, QR chung.

nên ∆HQR=∆PRQ.



15 tháng 8 2017

Xem hình a) ta có:

ˆAA^=ˆII^=800,ˆCC^=ˆNN^=300

ˆBB^=ˆMM^=1800-(800+300)=700

Và AB=MI, AC=IN, BC=MN.

nên ∆ABC=∆IMN

Xem hình b) ta có:

ˆQ2Q2^=ˆR2R2^=800 (ở vị trí so le trong)

Nên QH// RP

Nên ˆR1R1^ = ˆQ1Q1^= 600(so le trong)

ˆPP^=ˆHH^= 400

và QH= RP, HR= PQ, QR chung.

nên ∆HQR=∆PRQ.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét \(\Delta ABC\) và \(\Delta MNP\) có:

\(\begin{array}{l}AB = MN\\BC = NP\\AC = MP\end{array}\)

Vậy\(\Delta ABC\) =\(\Delta MNP\)(c.c.c)

Xét \(\Delta DEF\) và \(\Delta GHK\) có:

\(\begin{array}{l}DE = GH\\EF = HK\\DF = GK\end{array}\)

Vậy\(\Delta DEF\)=\(\Delta GHK\) (c.c.c)