\(t_1\) li độ của chất điểm l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2016

Lập hai pt độc lập với thời gian:

\(A^2=x_1^2+\left(\frac{v_1}{\omega}\right)^2\)

\(A^2=x_2^2+\left(\frac{v_2}{\omega}\right)^2\)

cho hai VP bằng nhau, giải pt  được ω=20 (rad/s)

Thay vào 1 trong 2 pt đầu được A=6(cm)

Chúc bạn học tốt! :D

28 tháng 8 2016

Cảm ơn bạn :D

 

22 tháng 10 2015

Vị trí cực đại giao thoa với hai nguồn cùng pha thỏa mãn điều kiện: \(d_1-d_2=k\lambda\)

Đường cực đại thứ nhất đi qua M1 thỏa mãn: \(d_1-d_2=1.\lambda=16cm\)(1)

Đường cực đại thứ 5 đi qua M2 thỏa mãn: \(d_1'-d_2'=5\lambda=24cm\)(2)

Lấy (2) - (1) vế với vế ta được: \(4\lambda=8\Leftrightarrow\lambda=2cm\)

Vận tốc: \(v=\lambda.f=2.10=20\)(cm/s)

22 tháng 10 2015

Bạn sử dụng điều kiện cực đại giao thoa của 2 dao động cùng pha.

24 tháng 11 2015


\(\lambda = v.T = \frac{v}{f}=\frac{50}{10}=5cm.\)

Tại M:  \(d_{2M}-d_{1M}=18-3=15=3.5\) => M dao động mạnh nhất.

Tại N: \(d_{2N}-d_{1N}=45-10=35=7.5\) => N dao động mạnh nhất.

 

V
violet
Giáo viên
17 tháng 5 2016

Gia tốc tỉ lệ với li độ, nên li độ tại B gấp đôi li độ tại A.

Giả sử li độ của A là x, thì của B là -2x (ngược dấu)

Li độ của M là: x - (x+2x) . 2 /3 = -x

Do vậy, gia tốc tại M là 3cm/s2

P/S: Đáp án chẳng liên quan gì nhỉ :)

rad/s là đơn vị của tần số góc ω chứ.

V
violet
Giáo viên
17 tháng 5 2016

Do thời gian biến thiên vận tốc là T/4, nếu biểu diễn vận tốc bằng véc tơ quay thì góc quay là 900 nên ta có:

\((\dfrac{-20\pi\sqrt 3}{v_0})^2+(\dfrac{-20\pi}{v_0})^2=1\)

\(\Rightarrow v_0=40\pi(cm/s)\)

\(\Rightarrow \omega = \dfrac{40\pi}{10}=4\pi(rad/s)\)

\(\Rightarrow f = 2Hz\)

Chọn B.

10 tháng 10 2015

2 điểm S1,S2 cung pha,giữa chúng có 10 điểm không dao động nghĩa là 10 điểm này cũng cùng pha với 2 nguồn. Với 10 điểm ở giữa sẽ chia AB thành 11 đoạn,10 điểm này lại cùng pha,khoảng cách giữa 2 điểm cùng pha gần nhất là lamda, vậy 11lamda=11=> lamda=1,v=f.lamda=26 B

25 tháng 11 2015

Biên độ sóng tại một điểm M bất kì cách nguồn O1, O2 lần lượt các đoạn d1, d2 là 

\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}+\frac{\triangle\varphi}{2\pi})|\)

\(\triangle\varphi = 0\)

Biên độ tại điểm có cực đại giao thoa \(A_{Mmax} = A_0=> 2a =2cm.\)

Để biên độ sóng tại M 

\(A_M = 1,2 cm=> |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = 1,2\)

=> \(\cos \pi(\frac{d_2-d_1}{\lambda})= 0,6.\)

\(=> \pi.(\frac{d_2-d_1}{\lambda}) = \frac{53}{180}.\pi+k2\pi\)

=> \(d_2-d_1 = (2k + 0,29)\lambda\ \ (1).\)

M nằm trên đoạn thẳng \(O_1O_2\) tức là (không được tính hai nguồn)

        \(-O_1O_2 < d_2-d_1 < O_1O_2\)

Thay (1) vào ta được 

        \(-O_1O_2 < (2k+0,29)\lambda < O_1O_2\)

=> \(-1,745 < k < 1,455\)

=> \(k = -1,0,1.\)

 

23 tháng 8 2016

Bạn áp dụng CT của dao động điều hòa:

\(A^2=x^2+\dfrac{v^2}{\omega^2}\)

Với \(x=\alpha.\ell\), li độ là độ dài cung của góc \(\alpha\) (tính theo rad)

\(\Rightarrow (\alpha_0.\ell)^2=(\alpha.\ell)^2+\dfrac{v^2.\ell}{g}\)

\(\Rightarrow \alpha_0^2=\alpha^2+\dfrac{v^2}{g\ell}\)

Chọn đáp án A.

23 tháng 8 2016

Cảm ơn bạn vui

15 tháng 7 2016
A, B bụng  10=k\(\frac{\text{λ}}{2}\)
Cứ giữa 2 bụng liên tiếp có 2 điểm dao động biên độ 2 20 điểm thì k=10
Vậy λ=2cm
 
 
20 tháng 5 2016

a 30

\(\omega =4\pi(rad/s)\)

\(|a|\le160\sqrt 3\) ứng với phần gạch đỏ trên hình, thời gian 1/3T ứng với véc tơ quay 1 góc 1200,.

Do vậy, mỗi một góc nhỏ là 300

\(\Rightarrow a_{max}=\dfrac{a}{\sin 30^0}=2a=320\sqrt 3(cm/s) \)

\(\Rightarrow A = \dfrac{a_{max}}{\omega^2}=2\sqrt 3(cm)\)

Cơ năng: \(W=\dfrac{1}{2}kA^2\Rightarrow k=\dfrac{2W}{A^2}=\dfrac{0,004}{(0,02\sqrt 3)^2}=...\)