Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi các kích thước hìh chữ nhật là x, y, z thỳ x, y, z > 0 vs x + y + z = k (ko đổi). Áp dụng bất đẳng thức Cô-si cho ba số dương ta có:
\(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{k}{3}\)
Do đó: \(\text{V}=xyz\le\left(\frac{k}{3}\right)^3\)(ko đổi).
Vậy: V đạt giá trị lớn nhất khj và chỉ khi BĐT này trở thành đẳng thức hay là x = y = z, tức là khi hình chữ nhật trở thành hình lập phương.
b) Gọi 3 kích thước của hình hộp là x, y, z (ĐK)
Áp dụng bất đẳng thức Cô - si cho 3 số dương ta có :
\(x+y+z\ge3\sqrt[3]{xyz}\)
Từ đây ta có :
x + y + z nhỏ nhất là = \(3\sqrt[3]{xyz}\)
Bất đẳng thức Cô - si xảy ra dấu "=" khi : x = y = z.
Mọi người ko cần giúp mk nữa đâu vì mk làm được rùi nha !
1. Chứng minh cho bốn đỉnh của tứ giác cách đều một điểm nào đó.
2. Chứng minh tứ giác có tổng 2 góc đối bằng 1800.
3. Chứng minh từ hai đỉnh cùng kề một cạnh cùng nhìn một cạnh dưới hai góc bằng nhau.
4. Nếu một tứ giác có tổng số đo hai góc đối bằng thì tứ giác đó nội tiếp được trong một đường tròn.
5. Tứ giác có góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối của đỉnh đó thì nội tiếp được trong một đường tròn.
6. Chứng minh bằng phương pháp phản chứng.
( Trên đây chỉ là một số cách còn nhiều cách khác bn tự tìm hiểu nha! )
ta có: Chứng Mình Rằng
=> Chứng có: C
=> Minh có: M
=> Rằng có: R
=> Chứng minh rằng là viết tắt của CMR (đpcm)
bạn lớp mấy
1 bàn tay có 0 ngón chân nha :D