K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2020

\(2\sqrt{x}=14\Leftrightarrow\sqrt{x}=7\Leftrightarrow x=49\)

27 tháng 6 2017

Ta có: \(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(3^{150}=\left(3^2\right)^{75}=9^{75}\)

\(9^{75}>8^{75}\Rightarrow3^{150}>2^{225}\)

Vậy...

28 tháng 6 2017

@rõ hơn chỗ nào bạn, mình thấy thế là chi tiết lắm r` mà

23 tháng 4 2019

Toan lop 6 nha ko phai lop 10 dau.

25 tháng 4 2019

b)để có giá trị số nguyên thì :

x+3 chia hết x-2

suy ra (x-2)+5 chia hết x-2

mà x-2 chia hết x-2

vậy x thuộc ước của -5

U(-5)=1 ; 5 ; -1 ; -5

14 tháng 12 2016

2, a,

\(f\left(-2\right)=5-2\times\left(-2\right)=9\)

\(f\left(-1\right)=5-2\times\left(-1\right)=7\)

\(f\left(0\right)=5-2\times0=5\)

\(f\left(3\right)=5-2\times3=-1\)

b, \(y=5\Leftrightarrow5-2x=5\Leftrightarrow x=0\)

\(y=3\Leftrightarrow5-2x=3\Leftrightarrow x=1\)

\(y=-1\Leftrightarrow5-2x=-1\Leftrightarrow x=3\)

14 tháng 12 2016

toan lop7 nha may ban

19 tháng 2 2017

ĐK: \(x\ge-\frac{3}{2}\)

hiển nhiển nếu có nghiệm thì x>=0 (*)

\(\Leftrightarrow2x+3=x^2\Leftrightarrow x^2-2x-3=0\Rightarrow\left\{\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

(*) nghiệm duy nhất x=3

NV
7 tháng 11 2019

a/ ĐKXĐ: \(x\ge1\)

Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm

b/ \(x\ge1\)

\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)

Đặt \(\sqrt{x-1}=a\ge0\) ta được:

\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)

- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)

- Với \(0\le a\le1\) ta được:

\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)

- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)

NV
7 tháng 11 2019

c/ ĐKXĐ: \(x\ge\frac{49}{14}\)

\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)

\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)

\(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(7-\sqrt{14x-49}\ge0\)

\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)

Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)