Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2.
\(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮3\)
( 3 số nguyên liên tiếp chia hết cho 3)
\(P-\left(a_1+a_2+a_3+...+a_n\right)=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\) chia hết cho 3
=> P chia hết cho 3
Giả sử a1, a2, ..., a2017 là 2017 số khác nhau.
Và0 < a1 < a2 ... < a2017
Vì là số nguyên dương nên ta có
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2017}}\le\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2017}\)
\(< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+\frac{2016}{2}=1009\)
Từ đây ta thấy rằng nếu như 2017 số đó là khác nhau thì tổng luôn < 1009 vậy nên để tổng đó bằng 1009 thì phải có ít nhất 2 trong 2017 số đó bằng nhau
có bạn nào làm được bài này theo nguyên lí Đi - rich - lê ko
chon dai di thoi
a1=1
a2=3
=>d3=2
d1=a1-a3 de sai roi a1<a3 khong co d1