Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(x+z\right)}\)
\(\Rightarrow F-A=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^2-z^2}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}=0\)
\(\Rightarrow F=A\)
\(\Rightarrow2F=F+A=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\Rightarrow2F\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)
\(\Rightarrow2F\ge\frac{x^2+y^2}{2\left(x+y\right)}+\frac{y^2+z^2}{2\left(y+z\right)}+\frac{z^2+x^2}{2\left(z+x\right)}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)
\(\Rightarrow2F\ge\frac{1}{2}\left(x+y+z\right)=\frac{1}{2}\Rightarrow F\ge\frac{1}{4}\)
\(F_{min}=\frac{1}{4}\) khi \(x=y=z=\frac{1}{3}\)
Bài 1
Ta có \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=\sqrt{\left(1+\frac{1}{2}-\frac{1}{3}\right)^2}\)
Tương tự như trên ta được
S = 1+1/2-1/3+1+1/3-1/4+...+1+1/99-1/100
= 98 + 1/2 - 1/100
= 9849/100
Thế \(x=2,x=\frac{1}{2}\)thì được
\(\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}f\left(2\right)=-\frac{13}{32}\\f\left(\frac{1}{2}\right)=\frac{47}{32}\end{cases}}\)
Bài 1:
Ta có: xy ≤ (x + y)²/4 = 1/4, dấu = xảy ra khi x = y = 1/2
P = (x² + 1/y²)(y² + 1/x²) = (xy)² + 1 + 1 + 1/(xy)²
= (xy)² + 1/[256(xy)²] + 255/[256(xy)²] + 2
ta có:
(xy)² + 1/[256(xy)²] ≥ 2 √(1/256) = 1/8. dấu = xảy ra khi x = y = 1/2
255/[256(xy)²] + 2 ≥ 255/(256.1/16) + 2 = 287/16. dấu = xảy ra khi x = y = 1/2
cộng theo vế → P ≥ 1/8 + 287/16 = 289/16
vậy GTNN của P là 289/16, đạt được khi x = y = 1/2