Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không phải sgk. Sách luyện thêm cô cho làm bt thêm nha!
1. Xét hai tam giác \(PNA\)và \(MNC\):
\(\widehat{PNA}=\widehat{MNC}\)(hai góc đối đỉnh)
\(AN=NC\)
\(\widehat{NCM}=\widehat{NAP}\)(hai góc so le trong)
Suy ra \(\Delta PNA=\Delta MNC\left(g.c.g\right)\)
2. Xét tứ giác \(APCM\)có: \(AP//MC,AP=CM\)
do đó \(APCM\)là hình bình hành.
Suy ra \(PC=AM\).
Xét tam giác \(ABC\)có \(AB=AC\)nên tam giác \(ABC\)cân tại \(A\)
do đó trung tuyến \(AM\)đồng thời là đường cao của tam giác \(ABC\)
\(\Rightarrow AM\perp BC\)
\(APCM\)là hình bình hành nên \(PC//AM\)
suy ra \(PC\perp BC\).
3. Xét tam giác \(AIP\)và tam giác \(MIB\):
\(\widehat{API}=\widehat{MBI}\)(hai góc so le trong)
\(BM=AP\left(=MC\right)\)
\(\widehat{PAI}=\widehat{BMI}\left(=90^o\right)\)
suy ra \(\Delta AIP=\Delta MIB\left(g.c.g\right)\)
4. \(\Delta AIP=\Delta MIB\Rightarrow AI=MI\)
suy ra \(I\)là trung điểm của \(AM\).
Xét tam giác \(AMC\):
\(I,N\)lần lượt là trung điểm của \(AM,AC\)nên \(IN\)là đường trung bình của tam giác \(AMC\)
suy ra \(IN//BC\).
câu 10:a,đáp án:3,2V
vì trong mạch điện nối tiếp,hiệu điện thế giữa 2 đầu đoạn mạch bằng
tổng các hiệu điện thế trên mỗi đèn: