Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMQP có
H,I lần lượt là trung điểm của MQ,MP
=>HI là đường trung bình của ΔMQP
=>HI//QP và HI=QP/2
Xét ΔPMN có
I,K lần lượt là trung điểm của PM,PN
=>IK là đường trung bình của ΔPMN
=>IK//MN và \(IK=\dfrac{MN}{2}\)
b: H,I,K thẳng hàng
mà HI//PQ và IK//MN
nên HI//MN
Ta có: HI//MN
HI//PQ
Do đó: MN//PQ
Trả lời nhiều vào :)
Nhưng câu trả lời phải mang tính thuyết phục và có lí.
\(a,=\left(2a-1\right)\left(2a+1\right)\\ b,=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\\ c,=\left(16-3x\right)\left(16+3x\right)\\ d,Sửa:-36x^2+24x-4=-4\left(9x^2-6x+1\right)=-4\left(3x-1\right)^2\)
7x( y - 4 )2 - ( 4-y )3
= 7x ( 4 - y )2 ( 4-y )3
= ( 4 - y )2 [ 7x - ( 4 - y ) ]
= ( 4 - y )2 ( 7x + 4 - y )
học tốt!
\(7x\left(y-4\right)^2-\left(4-y\right)^3=7x\left(4-y\right)^2-\left(4-y\right)^3\)
\(=\left(4-y\right)^2.\left[7x-\left(4-y\right)\right]\)
\(=\left(4-y\right)^2.\left(7x-4+y\right)\)
Chúc bạn học tốt.
Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+9\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-9x^2+27x+9x^2+18x+9=15\)
\(\Leftrightarrow45x=6\)
hay \(x=\dfrac{2}{15}\)
Câu 20:
Ta có: \(\widehat{A}-\widehat{B}=40^0\Rightarrow\widehat{B}=\widehat{A}-40^0\)
\(\widehat{A}=2\widehat{C}\Rightarrow\widehat{C}=\frac{\widehat{A}}{2}\)
Vì AB//CD (gt) \(\Rightarrow\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía)\(\Rightarrow\widehat{D}=180^0-\widehat{A}\)
Tứ giác ABCD \(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\Rightarrow\widehat{A}+\left(\widehat{A}-40^0\right)+\frac{\widehat{A}}{2}+\left(180^0-\widehat{A}\right)=360^0\)
Và đến đây bạn dễ dàng tìm được góc A và từ đó suy ra được góc D.
Câu 29: Ta có:
\(\hept{\begin{cases}xy+x+y=3\\yz+y+z=8\\xz+x+z=15\end{cases}}\Leftrightarrow\hept{\begin{cases}xy+x+y+1=4\\yz+y+z+1=9\\xz+x+z+1=16\end{cases}\Leftrightarrow}\hept{\begin{cases}x\left(y+1\right)+\left(y+1\right)=4\\y\left(z+1\right)+\left(z+1\right)=9\\x\left(z+1\right)+\left(z+1\right)=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=4\\\left(y+1\right)\left(z+1\right)=9\\\left(z+1\right)\left(x+1\right)=16\end{cases}}\)
Đặt \(\hept{\begin{cases}x+1=a\\y+1=b\\z+1=c\end{cases}}\)với a,b,c > 1, khi đó ta có
\(\hept{\begin{cases}ab=4\\bc=9\\ca=16\end{cases}}\Leftrightarrow\hept{\begin{cases}abbc=4.9\\c=\frac{9}{b}\\ca=16\end{cases}}\Leftrightarrow\hept{\begin{cases}16b^2=36\\c=\frac{9}{b}\\a=\frac{16}{c}\end{cases}}\Leftrightarrow\hept{\begin{cases}b^2=\frac{36}{16}=\frac{9}{4}\\c=\frac{9}{b}\\a=\frac{16}{c}\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\frac{3}{2}\\c=\frac{9}{\frac{3}{2}}=6\\a=\frac{16}{6}=\frac{8}{3}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=a-1=\frac{8}{3}-1=\frac{5}{3}\\y=b-1=\frac{3}{2}-1=\frac{1}{2}\\z=c-1=6-1=5\end{cases}}\)
Vậy \(P=x+y+z=\frac{5}{3}+\frac{1}{2}+5=\frac{10+3+30}{6}=\frac{43}{6}\)
\(\Rightarrow12+20x-60=45x-15\Leftrightarrow25x=-33\Leftrightarrow x=-\dfrac{33}{25}\)
Bạn đổi I thành M nha
Gọi I là trung điểm của KC
Xét ΔKHC có M,I lần lượt là trung điểm của KH,KC
nên MI là đường trung bình
=>MI//HC
=>MI vuông góc với AH
Xét ΔAHI có
IM,HK là các đường cao
IM cắt HK tại M
Do đó: M là trực tâm
=>AM vuông góc với HI
Xét ΔBKC có
CH/CB=CI/CK
nên HI//BK
=>AM vuông góc với BK
các GP ;CTV học 24 xem giùm mk vs
Chảo bạn. Bạn cố gắng trình bày sạch đẹp, công thức cẩn thận thì khả năng được tick sẽ cao hơn nhé.