K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=5^2+12^2=169\)

=>\(BC=\sqrt{169}=13\left(cm\right)\)

Xét ΔBAC có BE là phân giác

nên \(\dfrac{AE}{AB}=\dfrac{CE}{CB}\)

=>\(\dfrac{AE}{5}=\dfrac{CE}{13}\)

mà AE+CE=AC=12

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AE}{5}=\dfrac{CE}{13}=\dfrac{AE+CE}{5+13}=\dfrac{12}{18}=\dfrac{2}{3}\)

=>\(AE=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\left(cm\right);CE=13\cdot\dfrac{2}{3}=\dfrac{26}{3}\left(cm\right)\)

b: Kẻ IH\(\perp\)AC

=>IH là khoảng cách từ I xuống AC

IH\(\perp\)AC

AB\(\perp\)AC

Do đó: IH//AB

Xét ΔAEB có AI là phân giác

nên \(\dfrac{EI}{IB}=\dfrac{AE}{AB}=\dfrac{10}{3}:5=\dfrac{2}{3}\)

=>\(\dfrac{EI}{EB}=\dfrac{2}{5}\)

Xét ΔEAB có HI//AB

nên \(\dfrac{HI}{AB}=\dfrac{EI}{EB}\)

=>\(\dfrac{HI}{5}=\dfrac{2}{5}\)

=>HI=2(cm)

c: Xét ΔABC có AD là phân giác

nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos45\)

=>\(AD=\dfrac{2\cdot5\cdot12}{5+12}\cdot\dfrac{\sqrt{2}}{2}\simeq4,99\left(cm\right)\)

1 tháng 3 2022

a. -Xét △ABC: AD là đường phân giác (gt)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BD}{CD}\) (định lí về đường phân giác trong tam giác)

\(\Rightarrow\dfrac{AB}{16}=\dfrac{6}{8}\)

\(\Rightarrow AB=\dfrac{6}{8}.16=12\left(cm\right)\)

b) -Xét △ABC: DE//AB (gt)

\(\Rightarrow\dfrac{EA}{EC}=\dfrac{BD}{CD}\) (định lí Ta-let)

Mà \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\left(cmt\right)\)

\(\Rightarrow\dfrac{EA}{EC}=\dfrac{AB}{AC}\) nên \(AC.EA=AB.EC\)

c) -Ta có: \(\widehat{BAD}=\widehat{CAD}\) (AD là tia phân giác của \(\widehat{BAC}\))

Mà \(\widehat{BAD}=\widehat{ADE}\) (AB//DE và so le trong)

\(\Rightarrow\widehat{CAD}=\widehat{ADE}\) nên △ADE cân tại E.

\(\Rightarrow AE=DE\)

-Xét △AIE: AP là đường phân giác.

\(\Rightarrow\dfrac{PE}{PI}=\dfrac{AE}{AI}\)(định lí về đường phân giác trong tam giác)

Mà \(AE=DE\left(cmt\right)\)\(AI=BI\) (I là trung điểm AB)

\(\Rightarrow\dfrac{PE}{PI}=\dfrac{DE}{BI}\)

-Xét △QDE: DE//BI.

\(\Rightarrow\dfrac{QD}{QI}=\dfrac{DE}{BI}\) (hệ quả định lí Ta-let)

Mà \(\dfrac{PE}{PI}=\dfrac{DE}{BI}\) nên \(\dfrac{PE}{PI}=\dfrac{QD}{QI}\)

 

8 tháng 4 2019

a xet ABC và DEC

 chung C

bAc=eDc=90 độ 

=> ABC và DEC đồng dạng (gg) (1)

b BC^2=3^2+5^2=34

=> BC= căn (34)

BD/DC=3/5

BC/DC=8/5

<=> căn 34/DC=8/5

=> DC=căn(34) *5/8

=> BD=căn(34) -DC=3(căn(34))/8

c Sabc=3*5/2=15/2

sabde= 15/2-15/2*17/32=225/64

a: BC=5

Xet ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=5/7

=>DB=15/7; DC=20/7

c: \(AD=\dfrac{2\cdot3\cdot4}{3+4}\cdot cos45=\dfrac{12}{7}\sqrt{2}\left(cm\right)\)