K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=5^2+12^2=169\)

=>\(BC=\sqrt{169}=13\left(cm\right)\)

Xét ΔBAC có BE là phân giác

nên \(\dfrac{AE}{AB}=\dfrac{CE}{CB}\)

=>\(\dfrac{AE}{5}=\dfrac{CE}{13}\)

mà AE+CE=AC=12

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AE}{5}=\dfrac{CE}{13}=\dfrac{AE+CE}{5+13}=\dfrac{12}{18}=\dfrac{2}{3}\)

=>\(AE=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\left(cm\right);CE=13\cdot\dfrac{2}{3}=\dfrac{26}{3}\left(cm\right)\)

b: Kẻ IH\(\perp\)AC

=>IH là khoảng cách từ I xuống AC

IH\(\perp\)AC

AB\(\perp\)AC

Do đó: IH//AB

Xét ΔAEB có AI là phân giác

nên \(\dfrac{EI}{IB}=\dfrac{AE}{AB}=\dfrac{10}{3}:5=\dfrac{2}{3}\)

=>\(\dfrac{EI}{EB}=\dfrac{2}{5}\)

Xét ΔEAB có HI//AB

nên \(\dfrac{HI}{AB}=\dfrac{EI}{EB}\)

=>\(\dfrac{HI}{5}=\dfrac{2}{5}\)

=>HI=2(cm)

c: Xét ΔABC có AD là phân giác

nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos45\)

=>\(AD=\dfrac{2\cdot5\cdot12}{5+12}\cdot\dfrac{\sqrt{2}}{2}\simeq4,99\left(cm\right)\)

a: Xét ΔABC có AD là phân giác

nên BD/CD=AB/AC=3/4

BC=10cm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó: BD=30/7(cm); CD=40/7(cm)

b: Xét ΔABC có DE//AC

nên DE/AC=BD/BC

=>DE/8=3/7

hay DE=24/7(cm)

a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{DB}{DC}=\dfrac{6}{8}=\dfrac{3}{4}\)

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA∼ΔHAC

c: Ta có: ΔHBA∼ΔHAC

nên HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

17 tháng 10 2021

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

BC2=AB2+AC2BC2=AB2+AC2

⇔BC2=62+82=100⇔BC2=62+82=100

hay BC=10(cm)

Vậy: BC=10cm

a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{DB}{DC}=\dfrac{6}{8}=\dfrac{3}{4}\)

a: AD là phân giác

=>DB/AB=DC/AC

=>6/AB=8/16=1/2

=>AB=12cm

b: Xét ΔCED và ΔCAB có

góc CED=góc CAB

góc C chung

=>ΔCED đồng dạng với ΔCAB