K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2020

Đáp án:

a) Thay m=3

x² - 2(3-1)x + 3² -6=0

⇔ x² - 4x + 3=0

⇔ x² -3x -x + 3 = 0

⇔ x(x-3) - (x-3) = 0

⇔(x-3) (x-1) =0

⇒ x-3 = 0 hoặc x-1 =0

⇒ x= 3 hoặc x= 1

b) Ta có Δ'= (m-1)² - m² + 6 = m² -2m + 1 - m² + 6 = -2m + 7

Để pt có 2 nghiệm thì Δ' ≥ 0 hay -2m + 7≥ 0

⇒ m ≤ 3,5

Áp dụng hệ thức vi ét cho pt trên ta có

  x1x1 + x2x2 = 2(m-1)

  x1x1 x2x2 = m2m2 -6 

Ta có x21x12 + x22x22 = 16

⇔ x21x12 + x22x22 + 2x1x1 x2x2 = 16 + 2 x1x1 x2x2

⇔(x1+x2)2x1+x2)2  = 16 + 2 x1x1 x2x2 

Thay vào ta đc

4 (m-1)² = 16 + 2 (m² - 6)

⇔4 ( m² - 2m + 1) = 16 + 2m² -12

⇔ 4m² - 8m + 4 = 16 + 2m² -12

⇔ 2m² -8m  =0

⇔ m² - 4m = 0

⇔ m( m-4) =0

⇒ m=0 hoặc m-4 = 0

⇒m=0 (TM) hoặc m=4 (KTM)

Vậy m =0

24 tháng 6 2020

Chắc bạn nhầm đề bài rồi bạn nhé, dù sao mình cũng cảm ơn bạn!

Giải \(\Delta\)

Vì x1,x2 là nghiệm của pt =>\(x_1^2-6x_1+2m-3=0;x_2-6x+2m-3=0\)

Áp dụng định lí vi -ét

\(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=2m-3\end{cases}}\)

Thay vào ... ta được 

\(\left(0+x_1-1\right).\left(0+x_2-1\right)=2\)

\(=>x_1.x_2-\left(x_1+x_2\right)+1=2\)

\(2m-3-6+1=2=>m=5\)(t/m)

Vậy...

12 tháng 5 2021

wao`

............

............

.............. \(hoangde\)

19 tháng 2 2016

đk đenta >0

tim x1 va xroi thay vao x21+ x22=10 la tinh dc m

19 tháng 2 2016

đenta=2^2-4*(-m^2+2m)

=>x1=.....;x2=..........................

thay vô  x12-x22=10 giải ra m

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

31 tháng 3 2019

a, Có \(\Delta'=m^2+1>0\)

Nên pt luôn có 2 nghiệm phân biệt (Không phải nghiệm trái dấu nhá)

Giải thích vì sao ko có nghiệm trái dâu : 

 Theo Vi-ét có \(\hept{\begin{cases}S=x_1+x_2=-1\\P=x_1.x_2=2m\end{cases}}\)

Vì tích bằng 2m chưa biết âm hay dương nên ko thể KL được

b, Ta có \(\left(x_1-x_2\right)^2+3x_1x_2=7\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=7\)

\(\Leftrightarrow1-2m=7\)

\(\Leftrightarrow m=-3\)

1 tháng 4 2019

Bạn Incur nhầm vi ét rồi ạ.

\(x^2-2mx-1=0\)

a, \(\Delta'=m^2+1>0\Rightarrow\)Phương trình luôn có hai nghiệm phân biệt.

Ta thấy a.c = 1. (-1)= - 1 <0

Suy ra luôn có nghiệm trái dấu.

b, Theo vi ét ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-1\end{cases}}\)

\((x_1-x_2)^2+3x_1x_2=7\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=7\)

\(\Leftrightarrow4m^2+1=7\Leftrightarrow m^2=\frac{3}{2}\Leftrightarrow m=\pm\frac{\sqrt{6}}{2}\)

8 tháng 4 2018

cậu đã giải bài này ra chưa cho tớ xin đáp án với ạ