Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+(21+22+23+24)+...+(297+298+299+2100)
A=1+2(1+2+22+23)+...+297(1+2+22+23)
A=1+(1+2+22+23)(2+...+297)
A=1+15(2+...+297)
Mà 15(2+...+297) chia hết cho 15
=> A chia 15 dư 1
Mk nghĩ dư 1
Nhưng mk ko thể giải ra giúp cậu
Mk xin lỗi
Nhưng mong cậu k mk nha
A = 20 + 21 + 22 + 23 + ....... + 2100
A = 1 + ( 21 + 22 + 23 + 24 ) + ........... + ( 297 + 298 + 299 + 2100 )
A = 1 + 2(1 + 2 + 22 + 23) + ......... + 297(1 + 2 + 22 + 23)
A = 1 + ( 1 + 2 + 22 + 23 )(2 + ........ + 297)
A = 1 + 15(2 + ......... + 297)
Mà 15( 2 + ........ + 297 ) chia hết cho 100
\(\Rightarrow\)A chia cho 100 dư 1
(2 mũ 0+2 mũ 1 + 2 mũ 2 + 2 mũ 3)+...+(2 mũ 97+2 mũ 98+2 mũ 99+2 mũ 100)
=( 1 + 2 + 4 + 8 )+...+(2 mũ 97x1+2 mũ 97x2 +2 mũ 97x4+2 mũ 97x8)
= 15 +...+ 2 mũ 97x(1+2+4+8)
= 15 +...+2 mũ 97x15
chia hêt cho 15 dư 0
A = (2 + 2^2+2^3+2^4) + .... + (2^97 + 2^98 + 2^99 + 2^100) + 1
= 2.15 + 2^5.15+...+2^97.15 + 1
=15.(2+2^5 + 2^97) + 1
chia 15 dư 1
A = (2^1+2^2+2^3+2^4) + ..... + (2^97 + 2^98 + 2^99 +2^100) + 1
A = 15.2 + 15.2^5+....+2^97.15 + 1
A = 15.(2+2^5+....+2^97) + 1
Vậy A chia 15 dư 0
Ta có:24=16 đồng dư với 1(mod 15)
=>(24)25=2100 đồng dư với 125(mod 15)
=>2100 đồng dư với 1(mod 15)
=>2100 chia 15 dư 1
=>20+21+..........+2100 chia 15 dư 1
A = (2^1+2^2+2^3+2^4) +........ + (2^97 + 2^98 + 2^99 + 2^100) + 1
A = 2.15 + 2^5.15+...+2^97.15
A = 15.(2+2^5+...+2^7)
A chia hết cho 15
Dư 1 bạn nhé
số dư của A= 20+21+22+23+.........+2100 khi chia cho 15 là 1
có cần cách trình bày ko bạn Trịnh Lê Trang Nhung