K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

Trong toán học, nguyên lý chuồng bồ câu, nguyên lý hộp hay nguyên lý ngăn kéo Dirichlet có nội dung là nếu như một số lượng n vật thể được đặt vào m chuồng bồ câu, với điều kiện n > m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể.[1] Định lý này được minh họa trong thực tế bằng một số câu nói như "trong 3 găng tay, có ít nhất hai găng tay phải hoặc hai găng tay trái." Đó là một ví dụ của một đối số đếm, và mặc dù trông có vẻ trực giác nhưng nó có thể được dùng để chứng minh về khả năng xảy ra những sự kiện "không thể ngờ tới", tỉ như 2 người có cùng một số lượng sợi tóc trên đầu, trong 1 đám đông lớn có một số người mặc kiểu quần áo giống nhau, hoặc bất thình lình trong hộp thư nhận được một số lượng cực lớn thư rác[1]. Người đầu tiên đề xuất ra nguyên lý này được cho là nhà toán học Đức Johann Dirichlet khi ông đề cập tới nó với tên gọi "nguyên lý ngăn kéo" (Schubfachprinzip). Vì vậy, một tên gọi thông dụng khác của nguyên lý chuồng bồ câu chính là "nguyên lý ngăn kéo Dirichlet" hay đôi khi gọi gọn là "nguyên lý Dirichlet" (tên gọi gọn này có thể gây ra nhầm lẫn với nguyên lý Dirichlet về hàm điều hòa). Trong một số ngôn ngữ như tiếng Pháp, tiếng Ý và tiếng Đức, nguyên lý này cũng vẫn được gọi bằng tên "ngăn kéo" chứ không phải "chuồng bồ câu". Nguyên lý ngăn kéo Dirichlet dược ứng dụng trực tiếp nhất cho các tập hợp hữu hạn (hộp, ngăn kéo, chuồng bồ câu), nhưng nó cũng có thể được áp dụng đối với các tập hợp vô hạn không thể được đặt vào song ánh. Cụ thể trong trường hợp này nguyên lý ngăn kéo có nội dung là: "không tồn tại một đơn ánh trên những tập hợp hữu hạn mà codomain của nó nhỏ hơn tập xác định của nó". Một số định lý của toán học như bổ đề Siegel được xây dựng trên nguyên lý này.

8 tháng 6 2017

đây có phải câu hỏi về toán không bạn ơi

17 tháng 3 2016

57-35=22

1056/22=48

\(2n-1⋮n+3\)

\(2\left(n+3\right)⋮n+3\)

\(2n+6⋮n+3\)

\(\left(2n+6\right)-\left(2n-1\right)⋮n+3\)

\(2n+6-2n+1⋮n+3\)

\(7⋮n+3\)

\(\Rightarrow n+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng xét giá trị 

n+31-17-7
n-2-44-10
5 tháng 10 2018

nền nhà tác dụng lên quả bóng một lực đẩy.còn quả bóng tennis có lực hút của Trái Đất nên nó rơi xuống

(mik viết theo hiểu biết của mik.k cho mik nhe)

​học tốt

22 tháng 11 2018

Vào Việt Jack.com

gợi ý:

loigiaihay.com

vietjack.com

chúc chép tốt

8 tháng 6 2017

Các số nguyên tố từ 2 đến 100 

2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 2

Tính chất của số nguyên tố

Kí hiệu là ''b / a'' nghĩa là b là ước của a, kí hiệu a \(⋮\) b nghĩa là a chia hết cho b

1. Ước tự nhiên khác 1 nhỏ nhất của 1 số tự nhiên là nguyên tố

Chứng minh; Giả sử d / a nhỏ nhất; d \(\ne\) 1.

Nếu d không nguyên tố \(\Rightarrow\) d \(=\) d1. d2 ; d1, d2 lớn hơn 1 

\(\Rightarrow\) d1 / a với d1 lớn hơn d ; mâu thuẫn với d nhỏ nhất. Vậy d là nguyên tố 

2. Cho p là nguyên số; a \(\in\) N; a \(\ne\) 0. Khi đó 

a,b \(=\) p \(\Leftrightarrow\) a \(⋮\) p 

a,b \(=\) 1\(=\) a p

3. Nếu tích của nhiều số chia hết cho một số nguyên tố p thì có ít nhất một thừa số chia hết cho p 

    \(II\) ai \(⋮\) \(\Rightarrow\) \(\exists\)ai \(⋮\)p

4. Ước số dương bé nhất khác 1 của số nguyên tố không vượt qua \(\sqrt{a}\) 

5. 2 số nguyên tố nhỏ nhất và cũng là số nguyên tố chẵn duy nhất 

6. Tập hợp các số nguyên là vô hạn. Tương đương với viếc ko có nguyên số lớn nhất

    Chứng minh; Giả sử có hữu hạn số nguyên tố; p1  bé hơn p2 bé hơn .... pn

Nhật xét a \(=\) p1. p2 .... pn + 1 

Ta có; a lớn hơn 1 và a 1 pi; ''i\(=\) a là hợp số, a có nguyên tố pi, hay aMpi và pi M pi. 1M pi ; Mâu thuẫn 

Vậy tập hợp các số nguyên tố là vô hạn 

Chúc bạn học giỏi

Giải thích giùm mik nha mấy bạn!

26 tháng 8 2016

gợi ý nè ;

BUT FOR + Noun (danh từ )
VD:

1. If it hadn't rained, we would have a better crop.

-> But for rain , we would have a better crop.

UNLLESS = IF NOT (trừ khi)

VD:

2. I only come if they invite me.

-> Unless they invite me , I won't come

27 tháng 8 2016

làm mik bài 2 được ko bài 1 mik làm được rồi xin bạn á

20 tháng 7 2018

  - Nguyên lý Dirichlet do nhà toán học người Đức nổi tiếng là Dirichlet đề xuất từ thế kỷ XX đã được áp dụng để chứng minh sự tồn tại nghiệm trong nhiều bài toán tổ hợp. Nguyên lý này được phát triển từ một mệnh đề rất đơn giản gọi là nguyên lý “nguyên lý quả cam” hay là nguyên lý  “chuồng chim bồ câu”: Giả sử có một đàn chim bồ câu bay vào chuồng. Nếu số chim nhiều hơn số ngăn chuồng thì chắc chắn có ít nhất một ngăn có nhiều hơn một con chim.                                                    

         - Một cách tổng quát, nguyên lý Dirichlet được phát biểu như sau:

      Nếu xếp nhiều hơn n+1 đối tượng vào n cái hộp thì tồn tại ít nhất một hộp chứa không ít hơn hai đối tượng.

     - Việc chứng minh nguyên lý này có thể tiến hành bằng lập luận phản chứng rất đơn giản: Giả sử không hộp nào chứa nhiều hơn một đối tượng thì chỉ có nhiều nhất là n đối tượng được xếp trong các hộp, trái với giả thiết là số đối tượng lớn hơn n.

vVí dụ 1:

         Một năm có nhiều nhất là 365 ngày. Do vậy trong số 366 người bất kỳ bao giờ cũng có ít nhất 2 người có cùng ngày sinh nhật ( không xét năm nhuận ).

vVí dụ 2:

        Thang điểm bài kiểm tra là từ 0 đến 10, tức là có 11 thang điểm khác nhau. Do vậy trong số 12 sinh viên bất kỳ của một lớp sẽ có ít nhất 2 người có kết quả bài kiểm tra giống nhau.

vVí dụ 3:

         Cấp bậc quân hàm của sĩ quan có 8 cấp bậc từ thiếu úy đến đại tá. Do vậy trong một đơn vị có 9 sĩ quan thì sẽ có ít nhất 2 người cùng cấp bậc.

·      Nguyên lý Dirichlet cơ bản:

       Nếu nhốt n+1 con thỏ vào n cái chuồng thì bao giờ cũng có một chuồng chứa ít nhất 2 con thỏ.

·      Nguyên lý Dirichlet mở rộng:

      Nếu nhốt n con thỏ vào cái chuồng thì tồn tại một chuồng có ít nhất  con thỏ .

     Ở đây kí hiệu  để chỉ phần nguyên của .

      Ta có thể chứng minh nguyên lý Dirichlet mở rộng như sau: Giả sử mọi chuồng thỏ không có đến  ==(con)

                thì số thỏ trong mỗi chuồng đều nhỏ hơn hoặc bằng  con. Từ đó suy ra tổng số con thỏ không vượt quá  con. Điều này vô lý vì có n con thỏ. Vậy giả thiết phản chứng là sai. Nguyên lý Dirichlet mở rộng được chứng minh.

20 tháng 7 2018

Nếu đem m thỏ vào n lồng với m>n thì ít nhất cũng có một lồng nhốt không ít hơn 2 thỏ. Tương tự, nếu đem m đồ vật vào n ô ngăn kéo, với m>n, thì ít nhất cũng phải có 1 ô ngăn kéo chứa không ít hơn 2 đồ vật
Phần chứng minh bài toán, các bạn chắc gần như ai cũng biết, mình chỉ xin nêu một vài bài toán vận dụng cơ bản.

Ví dụ 1:
Trong một lớp chuyên toán có 40 học sinh. Trong một kỳ kiểm tra chất lượng môn toán chỉ có một em đạt điểm tối đa là 10, và một em đạt điểm 4, các em khác đạt từ điểm 5 trở lên. Chứng minh rằng trong lớp ít nhất cũng có 8 em có điểm số như nhau, biết rằng điểm số các em đều là các số nguyên.

Lời giải: 
Theo giả thiết của bài toán thì chỉ có một em đạt điểm 10 và một em đạt điểm 4, do đó sẽ có 40−2=3840−2=38 em đạt điểm 5 đến điểm 9. Coi mỗi học sinh là một "thỏ", mỗi loại điểm là 1 "lồng", như vậy ta sẽ có các lồng sau:
"Lồng 5": nhốt những ai đạt điểm 5
"Lồng 6": nhốt những ai đạt điểm 6
"Lồng 7": nhốt những ai đạt điểm 7
"Lồng 8": nhốt những ai đạt điểm 8
"Lồng 9": nhốt những ai đạt điểm 9
Với 5 lồng nhốt 38 thỏ, vậy có ít nhất một lồng nhốt không ít hơn 8 thỏ, bài toán được chứng minh.
Ví dụ 2:
Cho 10 số tự nhiên bất kỳ: a1,a2,a3...,a9,a10a1,a2,a3...,a9,a10
Chứng minh rằng thế nào cũng có một số hoặc tổng một số số liên tiếp nhau trong dãy 10 số đã cho chia hết cho 10.
Lời giải:

Để làm xuất hiện khái niệm "thỏ", "lồng", ta thành lập dãy số mới sau đây:
Đặt B1=a1B1=a1
B2=a1+a2B2=a1+a2
B3=a1+a2+a3B3=a1+a2+a3
B4=a1+a2+a3+a4B4=a1+a2+a3+a4
...
B10=a1+...+a10B10=a1+...+a10
Ta thấy rằng:
- Nếu tồn tài một BiBi nào đó (i=1,2,3,...,10) chia hết cho 10 thì bài toán đã được chứng minh.
- Nếu không tồn tại một B1B1 nào đó chia hết cho 10 thì ta chỉ việc đem tất cả BiBi chia cho 10, lúc đó được 10 số dư từ 1-9, trong khi đó các số tự nhiên từ 1-9 chỉ có 9 số (như vậy tương đương với việc nhốt 10 chủ thỏ vào 9 lồng), theo nguyên tắc Đi-rích-lê, tồn tại 1 lồng nhốt không ít hơn 2 chú thỏ, tương đương với việc tồn tại hai số có cùng số dư, như vậy có hiệu chia hết cho 10, bài toán được chứng minh