K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

áp dụng bđt svacxơ, ta có 

\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)

dấu = xảy ra <=>\(\frac{x^2}{a}=\frac{y^2}{b}\)

nên \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=2.\frac{x^{2n}}{a^n}\)

,mặt khác, ta có \(\frac{2}{\left(a+b\right)^n}=2.\frac{1}{\left(a+b\right)^n}=2.\frac{\left(x^2+y^2\right)^n}{\left(a+b\right)^n}=2.\frac{\left(2.x^2\right)^n}{\left(2.a\right)^n}=2.\frac{2^2.x^{2n}}{2^2.a^n}=2.\frac{x^{2n}}{a^n}\)

từ 2 điều trên => \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=\frac{2}{\left(a+b\right)^n}\)

5 tháng 4 2015

a/ Áp dụng Bất đẳng thức Cauchy cho các số m2,n2,1 không âm ta được:

m2+1>=2m(1)

n2+1>=2n (2)

Từ (1) và (2)=> m2+n2+2>= 2m+2n vs mọi m,n (đpcm)

b/ Ta có: (a-b)2>= 0

<=> a+b2-2ab>=0

<=>a2+b2+2ab>=4ab (cộng 2 vế vs 2ab với a>0,b>0)

<=> (a+b)2>= 4ab

<=> a+b >= 4ab/(a+b) (chia 2 vế cho a+b với a>0.b>0) 

<=> (a+b)/ab>= 4/(a+b) (3)

Mà: 1/a+1/b=(a+b)/ab (4)

Từ (3) và (4)=> 1/a+1/b>=4/(a+b)

<=> (a+b)(1/a+1/b)>=4 (đpcm)

 

5 tháng 4 2015

cộng 2 vế với 4 ab , nhầm ^^

4 tháng 10 2019

Câu hỏi của Nguyễn Phương Thảo - Toán lớp 7 - Học toán với OnlineMath

=> \(n+2=p^2\) là số chính phương.

4 tháng 10 2019

ta có p^2=(m+n)(m-1)

vì m+n>m-1

>0

m

+n=p^2

m-1=1

suy ra m=2=>n+2=p^2 là số chính phuopwng

25 tháng 7 2016

cm phản chứng

31 tháng 7 2015

Dự đoán dấu "=" khi \(m=n=\frac{1}{\sqrt{2}}\text{ hoặc }=-\frac{1}{\sqrt{2}}\)

Nhận thấy dù m, n âm hay dương trong 2 trường hợp trên thì giá trị P vẫn không đổi.

Ta áp dụng Côsi như sau:

\(\frac{m^2n^2}{m^2+n^2}+k\frac{m^2+n^2}{m^2n^2}+\left(1-k\right)\frac{m^2+m^2}{m^2n^2}\ge2\sqrt{\frac{m^2n^2}{m^2+n^2}.k\frac{m^2+n^2}{m^2.n^2}}+\left(1-k\right)\frac{2mn}{m^2n^2}\)\(\text{(}0<\)\(k<\)\(1\text{)}\)

\(=2\sqrt{k}+\left(1-k\right).\frac{2}{\frac{1}{2}}\)

Dấu "=" xảy ra khi \(m=n\text{ và }\frac{m^2n^2}{m^2+n^2}=k\frac{m^2+n^2}{m^2n^2}\)

Theo dự đoán, suy ra: \(\frac{\left(\frac{1}{2}\right)^2}{\frac{1}{2}+\frac{1}{2}}=k.\frac{\frac{1}{2}+\frac{1}{2}}{\left(\frac{1}{2}\right)^2}\Rightarrow k=\frac{1}{16}\)

~~~>> Trình bày ......................