Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có ít nhất 70 học sinh chơi cả 3 môn thể thao.
k cho mình nha...
sr bạn mình ko biết trình bày
(theo đề bài)=>công phượng chơi bóng siêu hưn công vink
thế là vỗ tax xog bài dễ ẹc
Ta kiểm tra 1 vài giá trị nhỏ. Gọi A là người đi trước và B là người đi sau. Vị trí người đi trước luôn thắng ta gọi là W, vị trí người đi trước luôn thua gọi là L (viết tắt là thắng thua thì T-T ko phân biệt được, viết tắt là T-B thắng bại thì chữ B lại trùng với người B)
1 viên bi: A hiển nhiên thắng (W)
2 viên bi: A buộc phải lấy 1 viên. B lấy nốt viên còn lại nên A thua (L)
3 viên: A hiển nhiên lấy hết cả 3 viên nên thắng (W)
4 viên: tương tự, A thắng (W)
5 viên: A lấy 3 viên, đặt B vào trường hợp 2, do đó A thắng (W)
6 viên: A lấy 4 viên và thắng (W)
7 viên: nếu A lấy 1 viên, B sẽ lấy 4 viên và đặt A vào trường hợp 2 nên A thua, nếu A lấy 3 hoặc 4 viên, B sẽ lấy hết số còn lại, A vẫn thua. Do đó, trong trường hợp này A luôn thua (L)
8 viên: A hiển nhiên sẽ lấy 1 viên và đặt B vào trường hợp 7, A thắng (W)
9 viên: dù A lấy 1, 3 hay 4 viên thì B sẽ đều rơi vào các trường hợp thắng 8, 6, 5. Do đó A luôn thua (L)
10 viên: A chắc chắn lấy 1 hoặc 3 viên để đẩy B vào trường hợp thua 9 hoặc 7. A luôn thắng (W)
Nhận thấy từ trường hợp 7 trở đi, nếu số bi là lẻ thì người đi trước sẽ luôn thua cuộc và số bi là chẵn thì người đi trước luôn thắng cuộc (do trong 2 lượt đi liên tiếp, người đi sau luôn chắc chắn có cách bốc để tổng số bi qua 2 lượt là 1 số chẵn, qua đó đảm bảo tính chẵn lẻ của số bi còn dư trên bàn) (1)
Vậy Phước sẽ luôn là người thắng trong trò chơi này. Cách chơi như sau: giả sử tổng số bi là chẵn và đủ lớn (\(\ge14\) , là tổng của trường hợp L=7 và tổng 2 số bi khác tính chẵn lẻ lớn nhất là 3+4)
- Nếu lượt đầu, Cẩn lấy 1 hoặc 3 viên \(\Rightarrow\) số bi còn lại là lẻ. Đến lượt Phước, Phước lấy 4 viên. Khi đó Cẩn phái khởi đầu lượt chơi tiếp theo với tổng số bi trên bàn là lẻ. Như vậy Phước chỉ cần tuân thủ chiến thuật ở (1) là chắc thắng
- Nếu lượt đầu, Cẩn lấy 4 viên => Phước sẽ lấy 1 hoặc 3 viên. Cẩn tiếp tục bị đẩy vào thế chắc chắn thua.
Để tìm chiến thuật chơi để An là người thắng cuộc, ta cần xem xét các trường hợp có thể xảy ra.
Trong trường hợp này, số viên kẹo trong hai túi là 18 và 21. Ta có thể tạo bảng để phân tích các trường hợp:
| Lượt chơi | Túi 1 (18 viên) | Túi 2 (21 viên) |
|-----------|----------------|----------------|
| 1 | 17 | 20 |
| 2 | 16 | 19 |
| 3 | 15 | 18 |
| 4 | 14 | 17 |
| 5 | 13 | 16 |
| 6 | 12 | 15 |
| 7 | 11 | 14 |
| 8 | 10 | 13 |
| 9 | 9 | 12 |
| 10 | 8 | 11 |
| 11 | 7 | 10 |
| 12 | 6 | 9 |
| 13 | 5 | 8 |
| 14 | 4 | 7 |
| 15 | 3 | 6 |
| 16 | 2 | 5 |
| 17 | 1 | 4 |
| 18 | 0 | 3 |
Dựa vào bảng trên, ta nhận thấy rằng nếu An chơi một cách thông minh, an sẽ luôn giữ số viên kẹo trong hai túi ở cùng một mức. Điều này đảm bảo rằng Bình sẽ không thể lấy hết kẹo từ một túi nào đó và An sẽ luôn có cơ hội lấy kẹo từ túi còn lại.
Vì vậy, chiến thuật chơi của An là giữ số viên kẹo trong hai túi ở cùng mức. Khi Bình lấy đi một viên kẹo từ một túi, An sẽ lấy đi một viên kẹo từ túi còn lại để duy trì số viên kẹo ở cùng mức.
Với chiến thuật này, An sẽ luôn là người thắng cuộc vì An có thể điều khiển trò chơi sao cho Bình không thể lấy hết kẹo từ một túi nào đó.
Bạn đầu tiên không thể thực hiện lượt chơi của mình nghĩa là sao ạ
30 học sinh vì các học sinh sau ở trong 30 học sinh ở trong lớp đó nha bạn. Không biết có đúng không nữa
53 học sinh