K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2020

1)

ĐKXĐ: \(\left\{{}\begin{matrix}a;b\ge0\\\left|a\right|\ne\left|b\right|\end{matrix}\right.\)

\(2\sqrt{ab}:\frac{a-b}{a^2-b^2}=2\sqrt{ab}:\frac{1}{a+b}\) \(=2a\sqrt{b}+2b\sqrt{a}\)

2)

\(B=\sqrt{mx}+\sqrt{nx}+\sqrt{m}+\sqrt{n}\)

\(=\sqrt{m}\left(\sqrt{x}+1\right)+\sqrt{n}\left(\sqrt{x}+1\right)\)

\(=\left(\sqrt{m}+\sqrt{n}\right)\left(\sqrt{x}+1\right)\)

4 tháng 2 2017

bạn xem lại đề thử bạn ơi

NV
26 tháng 9 2020

\(A\ge\frac{1}{3}\left(x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}\right)^2\ge\frac{1}{3}\left(x+y+z+\frac{9}{x+y+z}\right)^2=\frac{100}{3}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
24 tháng 10 2019

Biểu thức b chắc ghi nhầm, 1 căn dấu trừ thì hợp lý

\(a^3=6+3a.\sqrt[3]{9-4.2}=3a+6\Rightarrow a^3-3a=6\)

\(b^3=34+3b.\sqrt{17^2-12^2.2}=3b+34\Rightarrow b^3-3b=34\)

\(\Rightarrow A=a^3-3a+b^3-3b=6+34=40\)

2/ \(\Leftrightarrow\left\{{}\begin{matrix}2y^2-x^2=1\\2x^3-y^3=1.\left(2y-x\right)\end{matrix}\right.\)

\(\Rightarrow2x^3-y^3=\left(2y^2-x^2\right)\left(2y-x\right)\)

\(\Leftrightarrow x^3+2x^2y+2xy^2-5y^3=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+3xy+5y^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\Rightarrow2x^2-x^2=1\Rightarrow...\\x^2+3xy+5y^2=0\left(1\right)\end{matrix}\right.\)

Xét (1): \(\Leftrightarrow\left(x+\frac{3y}{2}\right)^2+\frac{11y^2}{4}=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) thay vào hệ ko thỏa mãn (loại)

NV
24 tháng 10 2019

\(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\Leftrightarrow2\left(m+n\right)=mn\)

\(\left\{{}\begin{matrix}\Delta_1=m^2-4n\\\Delta_2=n^2-4m\end{matrix}\right.\)

\(\Rightarrow P=\Delta_1+\Delta_2=m^2+m^2-4\left(m+n\right)\)

\(=m^2+n^2-2mn=\left(m-n\right)^2\ge0\)

\(\Rightarrow\) Luôn có ít nhất 1 trong 2 giá trị \(\Delta_1\) hoặc \(\Delta_2\) không âm nên luôn có ít nhất 1 trong 2 pt trên có nghiệm \(\Rightarrow\) pt luôn luôn có nghiệm

NV
27 tháng 4 2020

Câu 3:

\(\left\{{}\begin{matrix}mx+4y=9\\mx+m^2y=8m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=9\\\left(m^2-4\right)y=8m-9\end{matrix}\right.\)

Để hpt đã cho có nghiệm \(\Leftrightarrow m\ne\pm2\)

Khi đó ta có: \(\left\{{}\begin{matrix}y=\frac{8m-9}{m^2-4}\\x=8-my=8-\frac{8m^2-9m}{m^2-4}=\frac{9m-32}{m^2-4}\end{matrix}\right.\)

\(2x+y+\frac{38}{m^2-4}=3\)

\(\Leftrightarrow\frac{18m-64}{m^2-4}+\frac{8m-9}{m^2-4}+\frac{38}{m^2-4}=3\)

\(\Leftrightarrow26m-35=3m^2-12\)

\(\Leftrightarrow3m^2-26m+23=0\Rightarrow\left[{}\begin{matrix}m=1\\m=\frac{23}{3}\end{matrix}\right.\)

Câu 4:

\(\left\{{}\begin{matrix}m^2x-my=2m^2\\4x-my=m+6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=2m^2-m-6\\4x-my=m+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)x=\left(m-2\right)\left(2m+3\right)\\4x-my=m+6\end{matrix}\right.\)

- Với \(m=-2\) hệ vô nghiệm

- Với \(m=2\) hệ có vô số nghiệm thỏa mãn \(2x-y=4\)

- Với \(m\ne\pm2\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{2m+3}{m+2}\\y=mx-2m=\frac{2m^2+3m-2m^2-4m}{m+2}=\frac{-m}{m+2}\end{matrix}\right.\)

NV
27 tháng 4 2020

Câu 1: ĐKXĐ \(\left\{{}\begin{matrix}x\ne1\\y\ne-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\frac{1}{x-1}=u\\\frac{1}{y+1}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2u+v=7\\5u-2v=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4u+2v=14\\5u-2v=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u=2\\v=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=2\\\frac{1}{y+1}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-1=\frac{1}{2}\\y+1=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=-\frac{2}{3}\end{matrix}\right.\)

Câu 2:

Để hệ có nghiệm (x;y)=\(\left(2;-1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m.2-\left(m+1\right).\left(-1\right)=m-n\\\left(m+2\right).2+3n\left(-1\right)=2m-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m+n=-1\\3n=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=\frac{7}{3}\\m=\frac{5}{6}\end{matrix}\right.\)