K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

gọi H(x;y) là điểm thuộc tia phân giác của 2 đường thẳng 3x-4y+12=0(d1) va 12x+5y-7=0(d2)

\(\Rightarrow\) d(H;d1) = d(H;d2) \(\Leftrightarrow\dfrac{\left|3x-4y+12\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{\left|12x+5y-7\right|}{\sqrt{12^2+5^2}}\Leftrightarrow\)

\(13\left(3x-4y+12\right)=\pm5\left(12x+5y-7\right)\)​vậy pt 2 đường phân giác là:

\(\Leftrightarrow\left[{}\begin{matrix}21x+77y-192=0\\99x-27y+121=0\end{matrix}\right.\)

20 tháng 5 2017

Gọi M(x;y) là điểm thuộc đường phân giác của góc tạo bởi hai đường thẳng đã cho

+) Ta có:

Giải bài 6 trang 93 SGK hình học 10 | Giải toán lớp 10

+) Do điểm M thuộc đường phân giác của góc tạo bởi hai đường thẳng d1 và d2 nên điểm M cách đều hai đường thẳng trên: d( M; d1)= d(M, d2 )

Giải bài 6 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy phương trình 2 đường phân giác của góc tạo bởi hai đường thẳng đã cho là:

-21 x – 77y + 191= 0 và 99x – 27y + 121 =0

11 tháng 4 2017

Giả sử: \(d_{\left(M,\Delta_1\right)}=d_{\left(M,\Delta_2\right)}\)

\(\Rightarrow\dfrac{\left|2x+4y+7\right|}{\sqrt{2^2+4^2}}=\dfrac{\left|x-2y-3\right|}{\sqrt{1^2+2^2}}\)

\(\Rightarrow\sqrt{5}\left|2x+4y+7\right|=2\sqrt{5}\left|x-2y-3\right|\)

\(\Rightarrow\left|2x+4y+7\right|=2\left|x-2y-3\right|\)

* \(2x+4y+7=2\left(x-2y-3\right)\)

\(\Rightarrow8y+13=0\)

*\(2x+4y+7=-2\left(x-2y-3\right)\)

\(\Rightarrow4x+1=0\)

21 tháng 8 2018

Cho 2 đường thẳng cắt nhau  d 1 :   a 1   x   +   b 1 y   +   c 1   = 0   v à   d 2   :   a 2 x   +   b 2 y   +   c 2 =   0 .

Khi đó, phương trình đường phân giác tạo bởi 2 đường thẳng là:

a 1 x + ​ b 1 y + c 1 a 1 2 + ​ b 1 2 =   ±   a 2 x + ​ b 2 y + c 2 a 2 2 + ​ b 2 2

Áp dụng công thức ta có phương trình hai phân giác là:

3 x − 4 y + ​ 1 3 2 + ​ ( − 4 ) 2 =   ±   x + 3 1 2 + 0 2 ⇔ 3 x − 4 y + ​ 1 5 =    ± ( x + ​ 3 ) ⇔ 3 x − 4 y + 1 = ± 5   x ​ + ​ 3 ⇔ 2 x + ​ 4 y + ​ 14 = 0 8 x − 4 y + ​ 16 = 0 ⇔ x + 2 y + ​ 7 = 0 2 x − y + ​ 4 = 0

ĐÁP ÁN C

11 tháng 4 2017

AB giao AH \(\Rightarrow A=\left\{{}\begin{matrix}x-3y+11=0\\3x+7y-15=0\end{matrix}\right.\)

\(\Rightarrow A\left(-2;3\right)\)

AB giao BH \(\Rightarrow B=\left\{{}\begin{matrix}x-3y+11=0\\3x-5y+13=0\end{matrix}\right.\)

\(\Rightarrow B\left(4;5\right)\)

*\(AH\perp BC\Rightarrow BC:7x-3y+a=0\)

Mà BC đi qua B \(\Rightarrow7\times4-3\times5+c=0\Rightarrow c=-13\)

BC: \(7x-3y-13=0\)

*\(BH\perp AC\Rightarrow AC:5x+3y+c=0\)

Mà AC đi qua A \(\Rightarrow5\times\left(-2\right)+3\times3+c=0\Rightarrow c=1\)

AC: \(5x+3y+1=0\)

25 tháng 2 2018

tại sao tính được BC: 7x-3y+c =0 ạ ?

1 tháng 4 2016

Đường thẳng \(\Delta_1\) có vec tơ pháp tuyến \(\overrightarrow{n_1}=\left(3;4\right)\)

Đường thẳng \(\Delta_2\) có vec tơ pháp tuyến \(\overrightarrow{n_2}=\left(4;-3\right)\)

Do \(\overrightarrow{n_1}.\overrightarrow{n_2}=3.4+4.\left(-3\right)=0\) nên \(\Delta_1\perp\Delta_2\)

Do đó nếu đường thẳng d tạo với  \(\Delta_1,\Delta_2\) một tam giác cân, thì đó là tam giác vuông cân, tại đỉnh là giao điểm của  \(\Delta_1;\Delta_2\)

Bài toán quy về viết phương trình đường thẳng d đi qua điểm M(1;1) và tạo với đường thẳng  \(\Delta_1\) một góc \(\frac{\pi}{4}\).

Giả sử đường thẳng d có vec tơ pháp tuyến \(\overrightarrow{m}=\left(a;b\right)\) với \(a^2+b^2\ne0\), khi đó d có phương trình dạng :

\(ax+by-a-b=0\)

Do  góc \(\left(d;\Delta_1\right)=\frac{\pi}{4}\) nên

\(\frac{\left|3a+4b\right|}{5\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\Leftrightarrow7a^2-48ab-7b^2=0\)

                         \(\Leftrightarrow\begin{cases}a=7b\\7a=-b\end{cases}\)

Nếu a=7b, chọn b=1, a=7, ta được đường thẳng d : \(7x+y-8=0\)

Nếu 7a=-b, chọn a=1, b=-7 ta được đường thẳng d : \(x-7y+6=0\)

 
 
 
 
3 tháng 4 2016

M(2;-1)

 

6 tháng 11 2018

Đáp án B

Ta có:  là véc tơ pháp tuyến của d; d’ và  

Nên phương tình đường phân giác của góc nhọn là:

26 tháng 4 2017

M N d d d1 d2 I

a) Tọa độ giao điểm của (C) và d là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}x^2+y^2-x-7y=0\left(1\right)\\3x+4y-3=0\left(2\right)\end{matrix}\right.\)

Từ (2) => \(x=\dfrac{3-4y}{3}\) thay vào (1) ta được:

\(\left(\dfrac{3-4y}{3}\right)^2+y^2-\dfrac{3-4y}{3}-7y=0\)

<=> 16y2-24y+9+9y2-9+12y-63y=0

<=>25y2-75y=0

<=> y=0=>x=1

hoặc y=3=>x=-3

Gọi 2 giao điểm là M và N =>tọa độ M(1;0) và N(-3;3)

b) Viết lại phương trình (C): \(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{7}{2}\right)^2=\dfrac{25}{2}\)

=>tọa độ tâm I(0,5;3,5)

Gọi d1,d2 là các tiếp tuyến tại M và N

VTPT của d1 là: \(\overrightarrow{IM}=\left(\dfrac{1}{2};-\dfrac{7}{2}\right)\) và M thuộc d1

=> phương trình d1: \(\dfrac{1}{2}\left(x-1\right)-\dfrac{7}{2}y=0\)

hay d1: x-7y-1=0

Bằng cách tính tương tự ta được phương trình tiếp tuyến d2:

d2:7x+y+18=0

c)Tọa độ giao điểm d1 và d2 là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-7y-1=0\\7x+y+18=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)

=>tọa độ giao điểm là (-2,5;-0,5)