Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(x^2-5x+4\le0\Leftrightarrow1\le x\le4\Rightarrow D_1=\left[1;4\right]\)
Xét \(x^2-\left(m^2+3\right)x+2\left(m^2+1\right)\le0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-m^2-1\right)\le0\)
- Nếu \(\left|m\right|\ge1\Rightarrow D_2=\left[2;m^2+1\right]\)
- Nếu \(\left|m\right|< 1\Rightarrow D_2=\left[m^2+1;2\right]\)
Do \(2\in\left[1;4\right]\), để \(D=D_1\cap D_2\) là 1 đoạn có độ dài bằng 1
\(\Leftrightarrow\left[{}\begin{matrix}m^2+1=1\\m^2+1=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\pm\sqrt{2}\end{matrix}\right.\)
=>x^2-[(m-1)+(m-5)]x+m^2-6m+5<=0
=>x(x-m+1)-(m-5)(x-m+1)<=0
=>(x-m+1)(x-m+5)<=0
=>m-5<=x<=m-1
=>S=[m-5;m-1]
(3;5) là tập con của S
=>m-5>=3 và m-1<=5
=>m>=8 và m<=6
=>Loại
\(x\left(x-m^2-1\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\x\ge m^2+1\end{matrix}\right.\)
Để S và tập (5;10) có phần tử chung
\(\Leftrightarrow m^2+1< 10\)
\(\Rightarrow-3< m< 3\)
Ta có :
\(x^2-(8m+1)x+15m^2+3m\leq 0 \\ \Leftrightarrow (x-3m)(x-5m-1) \leq 0\\ \Leftrightarrow x\in [3m;5m-1] \ hoặc \ x\in[5m-1;3m] \)
Độ dài của S trên trục số là:
\(|5m-1-3m|>3 \\ \Leftrightarrow |2m-1| > 3 \\ \Leftrightarrow 2m-1 > 3 \ hoặc \ 2m-1 <-3\\\Leftrightarrow m>2 \ hoặc\ m<-1\)