K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

a) \(\sqrt{\dfrac{1}{600}}=\dfrac{\sqrt{1}}{10\sqrt{6}}=\dfrac{\sqrt{1}.\sqrt{6}}{10\sqrt{6}.\sqrt{6}}=\dfrac{\sqrt{6}}{60}\)

b) \(\sqrt{\dfrac{11}{540}}=\dfrac{\sqrt{11}}{6\sqrt{15}}=\dfrac{\sqrt{11}.\sqrt{15}}{6\sqrt{15}.\sqrt{15}}=\dfrac{\sqrt{165}}{90}\)

c) \(\sqrt{\dfrac{3}{50}}=\dfrac{\sqrt{3}}{5\sqrt{2}}=\dfrac{\sqrt{3}.\sqrt{2}}{5\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{6}}{10}\)

d) \(\sqrt{\dfrac{5}{98}}=\dfrac{\sqrt{5}}{7\sqrt{2}}=\dfrac{\sqrt{5}.\sqrt{2}}{7\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{10}}{14}\)

e) \(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{\sqrt{\left(1-\sqrt{3}\right)^2}}{3\sqrt{3}}=\dfrac{\sqrt{3}-1}{3\sqrt{3}}=\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{3\sqrt{3}.\sqrt{3}}=\dfrac{3-\sqrt{3}}{9}\)

20 tháng 9 2017

\(\sqrt{\dfrac{1}{600}}=\sqrt{\dfrac{1\cdot6}{600\cdot6}}=\sqrt{\dfrac{6}{60^2}}=\dfrac{\sqrt{6}}{60}\)

\(\sqrt{\dfrac{11}{540}}=\sqrt{\dfrac{11\cdot15}{540\cdot15}}=\sqrt{\dfrac{165}{90^2}}=\dfrac{\sqrt{165}}{90}\)

\(\sqrt{\dfrac{3}{50}}=\sqrt{\dfrac{3\cdot2}{50\cdot2}}=\sqrt{\dfrac{6}{10^2}}=\dfrac{\sqrt{6}}{10}\)

\(\sqrt{\dfrac{5}{98}}=\sqrt{\dfrac{5\cdot2}{98\cdot2}}=\sqrt{\dfrac{10}{12^2}}=\dfrac{\sqrt{10}}{12}\)

\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\sqrt{\dfrac{3\left(1-\sqrt{3}\right)^2}{27\cdot3}}\)

\(=\dfrac{\sqrt{3\left(1-\sqrt{3}\right)^2}}{\sqrt{9^2}}=\dfrac{\left|1-\sqrt{3}\right|\cdot\sqrt{3}}{9}\)

\(=\dfrac{\left(\sqrt{3}-1\right)\sqrt{3}}{9}\)

17 tháng 12 2020

1) Ta có: \(3\sqrt{12}+\dfrac{1}{2}\sqrt{48}-\sqrt{27}\)

\(=3\cdot2\sqrt{3}+\dfrac{1}{2}\cdot4\sqrt{3}-3\sqrt{3}\)

\(=6\sqrt{3}+2\sqrt{3}-3\sqrt{3}\)

\(=5\sqrt{3}\)

2) Ta có: \(\dfrac{2}{\sqrt{3}-5}\)

\(=\dfrac{2\left(\sqrt{3}+5\right)}{\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}\)

\(=\dfrac{2\left(\sqrt{3}+5\right)}{3-25}\)

\(=\dfrac{-2\left(\sqrt{3}+5\right)}{22}\)

\(=\dfrac{-\sqrt{3}-5}{11}\)

3) Ta có: \(\sqrt{\dfrac{2}{5}}\)

\(=\dfrac{\sqrt{2}}{\sqrt{5}}\)

\(=\dfrac{\sqrt{2}\cdot\sqrt{5}}{5}\)

\(=\dfrac{\sqrt{10}}{5}\)

NV
17 tháng 12 2020

Nếu em thấy các câu hỏi do lag mà bị gửi đúp (tức là rất nhiều câu hỏi giống nhau xuất hiện cùng 1 chỗ) thì xóa giúp mình nhé cho đỡ vướng. Nhưng nhớ để lại 1 câu. Cảm ơn em.

19 tháng 7 2018

a, Vì trong dấu căn là số âm nên biểu thức này vô nghĩa. b)\(\sqrt{\dfrac{1}{200}}=\dfrac{1}{\sqrt{200}}=\dfrac{1}{10\sqrt{2}}=\dfrac{\sqrt{2}}{10\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{2}}{20}\)

19 tháng 7 2018

c,\(\sqrt{\dfrac{7}{500}}=\dfrac{\sqrt{7}}{\sqrt{500}}=\dfrac{\sqrt{7}}{10\sqrt{5}}=\dfrac{\sqrt{7}.\sqrt{5}}{10\sqrt{5}.\sqrt{5}}=\dfrac{\sqrt{35}}{50}\)

26 tháng 8 2017

bài 1) a) \(xy\sqrt{\dfrac{x}{y}}=x\sqrt{y}\sqrt{y}\dfrac{\sqrt{x}}{\sqrt{y}}=x\sqrt{x}\sqrt{y}=\left(\sqrt{x}\right)^3\sqrt{y}\)

b) \(\sqrt{\dfrac{5a^3}{49b}}=\dfrac{\sqrt{5a^3}}{\sqrt{49b}}=\dfrac{\sqrt{5a^3}}{7\sqrt{b}}=\dfrac{\sqrt{5a^3}.\sqrt{b}}{7\sqrt{b}.\sqrt{b}}=\dfrac{\sqrt{5a^3b}}{7b}\)

bài 2) a) \(\dfrac{\sqrt{3}-3}{1-\sqrt{3}}=\dfrac{\sqrt{3}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=\sqrt{3}\)

b) \(\dfrac{5-\sqrt{15}}{\sqrt{3}-\sqrt{5}}=\dfrac{-\sqrt{5}\left(\sqrt{3}-\sqrt{5}\right)}{\sqrt{3}-\sqrt{5}}=-\sqrt{5}\)

c) \(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)

Bài 2: 

\(\dfrac{2\sqrt{3}-10}{5}\cdot\sqrt{\dfrac{5+\sqrt{3}}{5-\sqrt{3}}}\)

\(=\dfrac{2\sqrt{3}-10}{5}\cdot\sqrt{\dfrac{28+10\sqrt{3}}{22}}\)

\(=\dfrac{2\sqrt{3}-10}{5}\cdot\dfrac{5+\sqrt{3}}{\sqrt{22}}\)

\(=\dfrac{2\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}{5\sqrt{22}}\)

\(=\dfrac{2\cdot\left(3-25\right)}{5\sqrt{22}}=\dfrac{-44}{5\sqrt{22}}=\dfrac{-2\sqrt{22}}{5}\)

a: \(A=\dfrac{\sqrt{6}}{3}+\sqrt{6}-\sqrt{6}=\dfrac{\sqrt{6}}{3}\)

b: \(B=\dfrac{3}{5}\sqrt{10}+\dfrac{1}{2}\sqrt{10}-2\sqrt{10}=-\dfrac{9}{10}\sqrt{10}\)

c: \(C=\dfrac{\sqrt{21}}{7}\cdot\sqrt{a}-2\cdot\dfrac{\sqrt{21}}{3}\cdot\sqrt{a}+\sqrt{21}\cdot\sqrt{a}\)

\(=\dfrac{10\sqrt{21a}}{21}\)

31 tháng 3 2017
  • có nghĩa khi
    Nếu thì
    Nếu a<0, b<0 thì
  • Tương tự như vậy ta có:
    Nếu a> 0, b> 0 thì
    Nếu a<0, b<0 thì
  • Ta có:
    Điều kiện để căn thức có nghĩa là hay Do đó:
    Nếu b>0 thì
    Nếu thì
  • Điều kiện để có nghĩa là hay
    Cách 1.
    =
    Cách 2. Biến mẫu thành một bình phương rồi áp dụng quy tắc khai phương một thương:
  • Điều kiện để có nghĩa là hay xy>0.
    Do đó



17 tháng 5 2021

\(\sqrt{\dfrac{1}{600}}\)=\(\sqrt{\dfrac{1}{10^2\cdot6}}\)=\(\sqrt{\dfrac{1\cdot6}{10^2\cdot6\cdot6}}\)=\(\dfrac{\sqrt{6}}{60}\)

\(\sqrt{\dfrac{11}{540}}\)=\(\sqrt{\dfrac{11\cdot540}{540\cdot540}}\)=\(\dfrac{\sqrt{5940}}{540}\)=\(\dfrac{\sqrt{165}}{90}\)

\(\sqrt{\dfrac{3}{50}}\)=\(\sqrt{\dfrac{3\cdot50}{50\cdot50}}\)=\(\dfrac{\sqrt{150}}{50}\)=\(\dfrac{\sqrt{6}}{10}\)

\(\sqrt{\dfrac{5}{98}}\)=\(\sqrt{\dfrac{5\cdot98}{98\cdot98}}=\dfrac{\sqrt{490}}{98}=\dfrac{\sqrt{10}}{14}\)

\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)

17 tháng 5 2021

\(\sqrt{\dfrac{1}{600}}=\dfrac{\sqrt{6}}{60}\)

\(\sqrt{\dfrac{11}{540}}=\dfrac{\sqrt{165}}{90}\)

\(\sqrt{\dfrac{3}{50}}=\dfrac{\sqrt{6}}{10}\)

\(\sqrt{\dfrac{5}{98}}=\dfrac{\sqrt{10}}{14}\)

\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)

10 tháng 7 2017

bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không