Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2000}{2001}=1-\frac{1}{2001}\)
\(\frac{2001}{2002}=1-\frac{1}{2002}\)
\(2001< 2002\Rightarrow\frac{1}{2001}>\frac{1}{2001}\)
\(\Rightarrow1-\frac{1}{2001}< 1-\frac{1}{2002}\)
\(\Rightarrow\frac{2000}{2001}< \frac{2001}{2002}\)
ta có:2000/2001=1-1/2001
2001/2002=1-1/2002
mà 2001<2002
suy ra 1/2001>1/2002
suy ra 1-1/2001<1-1/2002
vậy 2000/2001<2001/2002
không quy đồng phân số hãy so sánh 2 phân số sau: 2017/ 2018 và 2016/2017
Ta so sánh 1/2018 và 1/2017
1/2018<1/2017
=> 2017/2018>2016/2017
ta có 1-1995/1996=1/1996
1-1996/1997=1/1997
vì 1/1996>1/1997
=>1995/1996<1996/1997
Ta lấy phần bù
\(1-\frac{1996}{1997}=\frac{1}{1997}\)
\(1-\frac{1995}{1996}=\frac{1}{1996}\)
\(\frac{1}{1997}< \frac{1}{1996}\)
Nhưng vì tìm phần bù nên ta đảo dấu
\(\Rightarrow\frac{1995}{1996}< \frac{1996}{1997}\)
\(a,\dfrac{199}{200}=1-\dfrac{1}{200};\dfrac{200}{201}=1-\dfrac{1}{201}\\ Vì:\dfrac{1}{200}>\dfrac{1}{201}\\ \Rightarrow1-\dfrac{1}{200}< 1-\dfrac{1}{201}\\ Vậy:\dfrac{199}{200}< \dfrac{200}{201}\\ b,\dfrac{2001}{2002}=1-\dfrac{1}{2002};\dfrac{2002}{2003}=1-\dfrac{1}{2003}\\ Vì:\dfrac{1}{2002}>\dfrac{1}{2003}\Rightarrow1-\dfrac{1}{2002}< 1-\dfrac{1}{2003}\\ Vậy:\dfrac{2001}{2002}< \dfrac{2002}{2003}\)
\(c,\dfrac{2021}{2020}=1+\dfrac{1}{2020};\dfrac{2020}{2019}=1+\dfrac{1}{2019}\\ Vì:\dfrac{1}{2020}< \dfrac{1}{2019}\\ Nên:1+\dfrac{1}{2020}< 1+\dfrac{1}{2019}\\ Vậy:\dfrac{2021}{2020}< \dfrac{2020}{2019}\\ d,\dfrac{199}{198}=1+\dfrac{1}{198};\dfrac{200}{199}=1+\dfrac{1}{199}\\ Vì:\dfrac{1}{198}>\dfrac{1}{199}\\ Nên:1+\dfrac{1}{198}>1+\dfrac{1}{199}\\ Vậy:\dfrac{199}{198}>\dfrac{200}{199}\)
16/27>1529
1995/1996<1996/1997
327/326<326/325
43/6>39/9
nhớ nhé
nhớ tích đúng cho mình nhé đảm bảo 1000000000000000000000000000000000000000000000000000000000000%là đúng
\(\frac{25}{49}>\frac{25}{50}=\frac{1}{2}=\frac{35}{70}>\frac{35}{71}\)
Do đó \(\frac{25}{49}>\frac{35}{71}\).
\(\frac{1997}{2003}=\frac{2003-6}{2003}=1-\frac{6}{2003}\)
\(\frac{1995}{2001}=\frac{2001-6}{2001}=1-\frac{6}{2001}\)
Có \(\frac{6}{2003}< \frac{6}{2001}\)do đó \(\frac{1997}{2003}>\frac{1995}{2001}\).
\(\frac{2020}{2018}=\frac{2018+2}{2018}=1+\frac{2}{2018}< 1+\frac{2}{2016}=\frac{2018}{2016}\)