Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2}{3}=\frac{8}{12}\) ; \(\frac{1}{4}=\frac{3}{12}\)
mà 8 > 3 ⇒ \(\frac{8}{12}>\frac{3}{12}\)⇒\(\frac{2}{3}>\frac{1}{4}\)
b) \(\frac{7}{10}\) và \(\frac{7}{8}\); mà 10 > 8 ⇒ \(\frac{7}{10}< \frac{7}{8}\)
c) \(\frac{6}{7}=\frac{30}{35}\); \(\frac{3}{5}=\frac{21}{35}\)
mà 30 > 21 ⇒ \(\frac{30}{35}>\frac{21}{35}\)⇒\(\frac{6}{7}>\frac{3}{5}\)
d) \(\frac{14}{21}=\frac{2}{3}\); \(\frac{60}{72}=\frac{5}{6}\)
\(\frac{2}{3}=\frac{4}{6}\) ⇒ \(\frac{2}{3}< \frac{5}{6}\)⇒ \(\frac{14}{21}< \frac{60}{72}\)
e) \(\frac{38}{133}=\frac{2}{7}\); \(\frac{129}{344}=\frac{3}{8}\)
\(\frac{2}{7}=\frac{16}{56}\) ; \(\frac{3}{8}=\frac{21}{56}\) mà 16<21 ⇒ \(\frac{16}{56}< \frac{21}{56}\)⇒ \(\frac{38}{133}< \frac{129}{344}\)
f) \(\frac{11}{54}=\frac{22}{108}\)và \(\frac{22}{37}\) mà 108 > 37 ⇒ \(\frac{22}{108}< \frac{22}{37}\)⇒ \(\frac{11}{54}< \frac{22}{37}\)
Bài 1 :
a) \(A=\frac{-1}{4.5}+\frac{-1}{5.6}-\frac{-1}{7.8}+\frac{-1}{9.10}\)
\(A=\frac{1}{4}\)\(-\left(-\frac{1}{5}\right)+...+\left(-\frac{1}{9}\right)-\left(-\frac{1}{10}\right)\)
\(A=\frac{1}{4}+\frac{1}{10}\)
\(A=\frac{3}{20}\)
Bài 2:
a,17178585=1717:17178585:1717=15;13135151=1313:1015151:101=135115=51255<65255=1351⇒17178585<13135151a,17178585=1717:17178585:1717=15;13135151=1313:1015151:101=135115=51255<65255=1351⇒17178585<13135151
b,201201202202=201201:1001202202:1001=201202=201⋅1001001202⋅1001001=201201201202202202
Bài 2:
a, S = 1/11 + 1/12 + .. +1/20 với 1/2
SỐ số hạng tổng S: [20 - 11]: 1 + 1 = 10 số
mà 1/11 > 1/20
1/12 > 1/20
.........................
1/20 = 1/20
=> 1/11 + 1/12 + ... + 1/20 > 1/20 . 10 => S > 1/2
b, B = 2015/2016 + 2016/2017 và C = 2015+2016/2016+2017
Dễ dàng ta thấy: C = 4031/4033 < 1
B = 2015/2016 + 2016/2017
B = 2015/2016 + [1/2016 + 4062239/4066272]
B = [2015/2016 + 1/2016] + 4062239/4066272]
B = 1 +4062239/4066272
=> B > 1
Vậy B > C
c, [-1/5]^9 và [-1/25]^5
ta có: 255 = [52]5 = 52.5 = 510 > 59
=> [1/5]9 > [1/25]5
=> [-1/5]9 < [-1/25]5
d, 1/32+1/42+1/52+1/62 và 1/2
ta có: 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 = 1/9 + 1/16 + 1/25 + 1/36
mà: 1/9 < 1/8
1/16 < 1/8
1/25 < 1/8
1/36 < 1/8
=> 1/9+1/16+1/25+1/36 < 1/2
Vậy 1/32+1/42+1/52+1/62 < 1/2
Bài 1:
A = 3/4 . 8/9 . 15/16....2499/2500
A = [1.3/22][2.4/32]....[49.51/502]
A = [1.2.3.4.5...51 / 2.3.4....50][3.4.5...51 / 2.3.4...50]
A = 1/50 . 51/2
A = 51/100
B = 22/1.3 + 32/2.4 + ... + 502/49.51
B = 4/3.9/8....2500/2499
Nhận thấy B ngược A => B = 100/51 [cách tính tương tự tính A]
Bài 2:
a. S = 1/11+1/12+...+1/20 và 1/2
Số số hạng tổng S: [20 - 11]: 1 + 1 = 10 [ps]
ta có: 1/11 > 1/20
a)\(9^{12}=\left(3^2\right)^{12}=3^{24}\)
\(27^7=\left(3^3\right)^7=3^{21}\)
\(\Rightarrow9^{12}>27^7\)
a) bạn Mạnh làm rồi và đúng
b) Ta có : \(333^{444}=\left(333^4\right)^{111}=\left[\left(3.111\right)^4\right]^{111}=\left[\left(3^4.111^4\right)\right]^{111}=\left(84.111^4\right)^{111}\)
\(444^{333}=\left(444^3\right)^{111}=\left[\left(4.111\right)^3\right]^{111}=\left[\left(4^3.111^3\right)\right]^{111}=\left(64.111^3\right)^{111}\)
Ta thấy (84.1114)111 > ( 64.1113)111 => 333444 > 444333
Vậy...
c) Vì \(17^{2002}+1>17^{2001}+1\)
\(\Rightarrow\frac{17^{2001}+1}{17^{2002}+1}< \frac{17^{2001}+1}{17^{2001}+1}\)
\(A=\frac{1}{3}.\frac{-9}{10}.\frac{-6}{13}.\frac{-13}{36}=\frac{-3}{10}.\frac{-1}{6}=\frac{1}{20}\)
\(B=\frac{4}{19}\left(\frac{-5}{12}+\frac{-7}{12}\right)-\frac{40}{57}=\frac{-4}{19}-\frac{40}{57}=\frac{-52}{57}\)
2 câu còn lại tự làm
\(A=\frac{1}{3}.\frac{-6}{13}.\frac{-9}{10}.\frac{-13}{36}\)
\(A=\frac{1}{1}.\frac{-2}{13}.\frac{-9}{10}.\frac{-13}{36}\)
\(A=\frac{-2}{13}.\frac{-9}{10}.\frac{-13}{36}\)
\(A=\frac{-1}{13}.\frac{-9}{5}.\frac{-13}{36}\)
\(A=\frac{-1}{13}.\frac{-1}{5}.\frac{-13}{4}\)
\(A=\frac{-13}{260}=\frac{-1}{20}\)
a) \(\frac{7}{5}.\frac{-31}{125}.\frac{1}{2}.\frac{10}{17}.\frac{-1}{2^3}=\frac{7.\left(-31\right).1.10.\left(-1\right)}{5.2.125.17.2^3}=\frac{31.7}{17.125.2^3}=\frac{217}{17000}\)
b) \(\left(\frac{17}{28}+\frac{18}{29}-\frac{19}{30}-\frac{20}{31}\right).\left(\frac{-5}{12}+\frac{1}{4}+\frac{1}{6}\right)=\left(\frac{17}{28}+\frac{18}{29}-\frac{19}{30}-\frac{20}{31}\right).0=0\)
c) \(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{3.4.5...100}{2.3.4...99}=\frac{100}{2}=50\)
d) \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-99}{100}=\frac{-\left(1.2.3..99\right)}{2.3.4...100}=-\frac{1}{100}\)
e) \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}=\frac{\left(1.2.3..29\right).\left(3.4.5...31\right)}{\left(2.3.4...30\right).\left(2.3.4...30\right)}\)
\(=\frac{1.31}{30.2}=\frac{31}{60}\)
bài 2:
a)\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)
\(=1-\frac{1}{1000}\)
\(=\frac{999}{1000}\)
mk ko biết bn có sai đề ko nhưng mk chỉ lm theo ý mk hiểu thôi! sai thì thôi nha!
bn làm như vầy nè
a=1/51+1/52+...+1/100
A=1/3.1/7 + 1/2.1/26+....1/2.1/50
A=1/3-1/7+1/2-1/26+...1/2-1/50
A=1/3-1/50
A=47/50
như vầy đó bn tin mik đi