Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2}{3}=\frac{8}{12}\) ; \(\frac{1}{4}=\frac{3}{12}\)
mà 8 > 3 ⇒ \(\frac{8}{12}>\frac{3}{12}\)⇒\(\frac{2}{3}>\frac{1}{4}\)
b) \(\frac{7}{10}\) và \(\frac{7}{8}\); mà 10 > 8 ⇒ \(\frac{7}{10}< \frac{7}{8}\)
c) \(\frac{6}{7}=\frac{30}{35}\); \(\frac{3}{5}=\frac{21}{35}\)
mà 30 > 21 ⇒ \(\frac{30}{35}>\frac{21}{35}\)⇒\(\frac{6}{7}>\frac{3}{5}\)
d) \(\frac{14}{21}=\frac{2}{3}\); \(\frac{60}{72}=\frac{5}{6}\)
\(\frac{2}{3}=\frac{4}{6}\) ⇒ \(\frac{2}{3}< \frac{5}{6}\)⇒ \(\frac{14}{21}< \frac{60}{72}\)
e) \(\frac{38}{133}=\frac{2}{7}\); \(\frac{129}{344}=\frac{3}{8}\)
\(\frac{2}{7}=\frac{16}{56}\) ; \(\frac{3}{8}=\frac{21}{56}\) mà 16<21 ⇒ \(\frac{16}{56}< \frac{21}{56}\)⇒ \(\frac{38}{133}< \frac{129}{344}\)
f) \(\frac{11}{54}=\frac{22}{108}\)và \(\frac{22}{37}\) mà 108 > 37 ⇒ \(\frac{22}{108}< \frac{22}{37}\)⇒ \(\frac{11}{54}< \frac{22}{37}\)
\(a,\Rightarrow A=-1\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{9.10}\right)\)
\(\Rightarrow A=-1\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(\Rightarrow A=-1\left(\dfrac{1}{4}-\dfrac{1}{10}\right)\)
\(\Rightarrow A=\dfrac{-3}{20}\)
Bài 2:
\(a,\dfrac{1717}{8585}=\dfrac{1717:1717}{8585:1717}=\dfrac{1}{5};\dfrac{1313}{5151}=\dfrac{1313:101}{5151:101}=\dfrac{13}{51}\\ \dfrac{1}{5}=\dfrac{51}{255}< \dfrac{65}{255}=\dfrac{13}{51}\\ \Rightarrow\dfrac{1717}{8585}< \dfrac{1313}{5151}\)
\(b,\dfrac{201201}{202202}=\dfrac{201201:1001}{202202:1001}=\dfrac{201}{202}=\dfrac{201\cdot1001001}{202\cdot1001001}=\dfrac{201201201}{202202202}\)
Ta có
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\) < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 - \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 - \(\frac{1}{2018}\)= \(\frac{2017}{2018}\)< 1
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 ( dpcm )
Ta có:
\(\frac{1}{2^2}\)< \(\frac{1}{1.2}\).
\(\frac{1}{3^2}\)< \(\frac{1}{2.3}\).
\(\frac{1}{4^2}\)< \(\frac{1}{3.4}\).
...
\(\frac{1}{2017^2}\)< \(\frac{1}{2016.2017}\).
\(\frac{1}{2018^2}\)< \(\frac{1}{2017.2018}\).
Từ trên ta có:
\(\frac{1}{2^2}\)+ \(\frac{1}{3^2}\)+ \(\frac{1}{4^2}\)+...+ \(\frac{1}{2017^2}\)+ \(\frac{1}{2018^2}\)< \(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+...+ \(\frac{1}{2016.2017}\)+ \(\frac{1}{2017.2018}\)= 1- \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{4}\)+...+ \(\frac{1}{2016}\)- \(\frac{1}{2017}\)+ \(\frac{1}{2017}\)- \(\frac{1}{2018}\)= 1- \(\frac{1}{2018}\)< 1.
=> \(\frac{1}{2^2}\)+ \(\frac{1}{3^2}\)+ \(\frac{1}{4^2}\)+...+ \(\frac{1}{2017^2}\)+ \(\frac{1}{2018^2}\)< 1.
=> ĐPCM.
Bài 1 :
a) \(A=\frac{-1}{4.5}+\frac{-1}{5.6}-\frac{-1}{7.8}+\frac{-1}{9.10}\)
\(A=\frac{1}{4}\)\(-\left(-\frac{1}{5}\right)+...+\left(-\frac{1}{9}\right)-\left(-\frac{1}{10}\right)\)
\(A=\frac{1}{4}+\frac{1}{10}\)
\(A=\frac{3}{20}\)
Bài 2:
a,17178585=1717:17178585:1717=15;13135151=1313:1015151:101=135115=51255<65255=1351⇒17178585<13135151a,17178585=1717:17178585:1717=15;13135151=1313:1015151:101=135115=51255<65255=1351⇒17178585<13135151
b,201201202202=201201:1001202202:1001=201202=201⋅1001001202⋅1001001=201201201202202202
a)
\(10A=\frac{10^{2002}+10}{10^{2002}+1}=1+\frac{9}{10^{2002}+1}\)
\(10B=\frac{10^{2003}+10}{10^{2003}+1}=1+\frac{9}{10^{2003}+1}\)
=> 10A > 10B => A > B