\(2x^3-3x^2+1\)

b) y= \(3x-\df...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

1) TXĐ: \(D=R\)
2) Sự biến thiên
Giới hạn hàm số tại vô cực
\(\lim\limits_{x\rightarrow+\infty}y\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^2-4x+3\right)=+\infty\)

\(\lim\limits_{x\rightarrow-\infty}y\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(x^2-4x+3\right)=+\infty\)
Chiều biến thiên
\(y'\left(x\right)=2x-4\)
\(y'\left(x\right)=0\)\(\Leftrightarrow x=2\)
Bảng biến thiên:
TenAnh1 TenAnh1 B = (-3.8, -6.16) B = (-3.8, -6.16) B = (-3.8, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) D = (-4.16, -5.98) D = (-4.16, -5.98) D = (-4.16, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) E = (11.2, -5.98)
Nhận xét: hàm số nghịch biên trên khoảng \(\left(-\infty;2\right)\) và đồng biến trên khoảng \(\left(2;+\infty\right)\).
Hàm số đạt cực tiểu tại \(x=2\) với \(y_{CT}=-1\).
- Đồ thị hàm số
TenAnh1 TenAnh1 B = (-3.8, -6.16) B = (-3.8, -6.16) B = (-3.8, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) D = (-4.16, -5.98) D = (-4.16, -5.98) D = (-4.16, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) F = (-4.2, -5.86) F = (-4.2, -5.86) F = (-4.2, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) x y O

29 tháng 5 2017

b)
1) Tập xác định: \(D=R\)
2) Sự biến thiên
\(y'\left(x\right)=-3-2x\);\(y'\left(x\right)=0\Leftrightarrow x=\dfrac{-3}{2}\).
Bảng biến thiên:
TenAnh1 TenAnh1 B = (-3.8, -6.16) B = (-3.8, -6.16) B = (-3.8, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) D = (-4.16, -5.98) D = (-4.16, -5.98) D = (-4.16, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) F = (-4.2, -5.86) F = (-4.2, -5.86) F = (-4.2, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) H = (-4.34, -5.96) H = (-4.34, -5.96) H = (-4.34, -5.96) I = (11.02, -5.96) I = (11.02, -5.96) I = (11.02, -5.96)
Nhận xét:
Hàm số đồng biến trên \(\left(-\infty;\dfrac{-3}{2}\right)\) và nghịch biến trên \(\left(-\dfrac{3}{2};+\infty\right)\).
Hàm số đạt cực đại tại \(x=-\dfrac{3}{2}\) với \(y_{CĐ}=\dfrac{13}{4}\).
3) Đồ thi hàm số
Giao Ox: \(y=0\Rightarrow2-3x-x^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
\(A\left(\dfrac{-3-\sqrt{17}}{2};0\right);B\left(\dfrac{-3+\sqrt{17}}{2};0\right)\).
Giao Oy: \(x=0\Rightarrow y=2\)
\(C\left(0;2\right)\).
TenAnh1 TenAnh1 B = (-3.8, -6.16) B = (-3.8, -6.16) B = (-3.8, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) C = (11.56, -6.16) D = (-4.16, -5.98) D = (-4.16, -5.98) D = (-4.16, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) E = (11.2, -5.98) F = (-4.2, -5.86) F = (-4.2, -5.86) F = (-4.2, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) G = (11.16, -5.86) H = (-4.34, -5.96) H = (-4.34, -5.96) H = (-4.34, -5.96) I = (11.02, -5.96) I = (11.02, -5.96) I = (11.02, -5.96) J = (-4.34, -5.84) J = (-4.34, -5.84) J = (-4.34, -5.84) K = (11.02, -5.84) K = (11.02, -5.84) K = (11.02, -5.84) x y A B O

7 tháng 9 2018

Tra loi gap gium minh

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

27 tháng 4 2017

Hỏi đáp Toán

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit