Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thử tiếp này \(\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\)
=> \(\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right)\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-xz\right)\left(z^2-xy\right)}\)
Có \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)
=> \(\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\)
=> \(\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right).\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-xz\right).\left(z^2-xy\right)}\)
\(=\frac{b^2}{\left(y^2-xz\right)^2}=\frac{ac}{\left(x^2-yz\right).\left(z^2-xy\right)}=\frac{b^2-ac}{\left(y^2-xz\right)^2-\left(x^2-yz\right).\left(z^2-xy\right)}\)
\(=\frac{c^2}{\left(z^2-xy\right)^2}=\frac{ab}{\left(x^2-yz\right).\left(y^2-xz\right)}=\frac{c^2-ab}{\left(z^2-xy\right)^2-\left(x^2-yz\right).\left(y^2-xz\right)}\)
Xét (x2 - yz)2 - (y2 - xz)(z2 - xy)
= ...................... (Tui xét phía dưới rùi kéo xuống phía dưới mà coi)
= x(x3 + y3 + z3 - 3xyz)
Tương tự, ta có (y2-xz)2 - (x2 - yz).(z2 - xy) = y.(x3 + y3 + z3 - 3xyz)
(z2 - xy)2 - (x2 - yz).(y2 - xz) = z.(x3 + y3 + z3 - 3xyz)
=> \(\frac{a^2-bc}{x\left(x^2+y^3+z^3-3xyz\right)}=\frac{b^2-ac}{y\left(x^3+y^3+z^3-3xyz\right)}=\frac{c^2-ab}{z\left(x^3+y^3+z^3-3xyz\right)}\)
=> \(\frac{a^2-bc}{x}=\frac{b^2-ac}{y}=\frac{c^2-ab}{z}\)(Đpcm)
x2=yz => \(\frac{x}{y}=\frac{z}{x}\)
\(z^2=xy\Rightarrow\frac{z}{x}=\frac{y}{z}\)
\(\Rightarrow\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\)
áp dụng ... ta có
\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}=\frac{x+z+y}{y+x+z}=1\)
\(\frac{x}{y}=1\Rightarrow x=y\)
\(\frac{z}{x}=1\Rightarrow z=x\)
=>x=y=z
Ta có x2=yz nên x/y=z/x(1)
y2=xz nên x/y=y/z(2)
z2=xy nên z/x=y/z(3)
Từ 1,2,3 suy ra x/y=z/x=y/z(4)
áp dụng t/c dãy tỉ số bằng nhau vào 4 có
x/y=z/x=y/z=x+y+z/x+y+z
vì x, y,z khác 0 nên x+y+z Khác 0
suy ra x+y+z/z+x+y=1
suy ra x/y=z/x=y/z=1
suy ra x=y; x=z; y=z
C2 :
Từ x2=yz⇒xz=yx(1)
Từ y2=xz⇒yx=zy(2)
Từ z2=xy⇒zy=xz(3)
Từ (1) , (2) và (3) ⇒xz=yx=zy
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
xz=yx=zy=x+y+zz+x+y=1
Khi đó : xz=1⇒x=z((
yx=1⇒y=x
zy=1⇒z=y
T