K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

a)

(x-2)2\(\ge\))

(y-3)2\(\ge\)0

=> (x-2)2=(y-3)2=0

=>\(\begin{cases}x-2=0\\y-3=0\end{cases}\Rightarrowy=3}}\)

b)

để 5(x-2)(x+3)=1

=> (x-2)(x+3)=0

=> \(\left[\begin{array}{nghiempt}x-2=0\\x+3=0\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.}\)

3 tháng 8 2016

a)\(\left(x+2\right)^2+\left(y-3\right)^2=0\)

\(\Leftrightarrow\begin{cases}x+2=0\\y-3=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-2\\y=3\end{cases}\)

Vậy x=-2 ; y=3

2 tháng 8 2016

a, (x-2)2+(y-3)2=0

ta thấy 

(x-2)2 với mọi x thuocj R

\(\left(y-3\right)^2\ge0\)với mọi y thuộc R

=>(x-2)2+(y-3)2>=0

=>  (x-2)2+(y-3)2=0 thi x=2 và y=3

b) 5(x-2)(x+3)=1

<=> 5x2+5x-30-1=0

<=> \(x=\frac{-5\pm\sqrt{645}}{10}\)

2 tháng 8 2016

bạn có thể viết rõ hơn dễ hiểu hơn dcj ko

 

25 tháng 6 2018

a) \(2A=2+2^2+...+2^{2018}\)

\(A=1+2+2^2+..+2^{2017}\)

=> \(A=2^{2018}-1< 2^{2018}\)

=> A < B

b) \(3B=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

    \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

=> \(2B=3B-B=1-\frac{1}{3^{99}}\)

=> \(B=\frac{1}{2}-\frac{1}{3^{99}\cdot2}< \frac{1}{2}\)( đpcm )

6 tháng 6 2016

1)Đặt A= -125- ( x - 4)2 - ( y- 5 )2

Ta thấy:\(\begin{cases}-\left(x-4\right)^2\le0\\-\left(y-5\right)^2\le0\end{cases}\)

\(\Rightarrow-\left(x-4\right)^2-\left(y-5\right)^2\le0\)

\(\Rightarrow-125-\left(x-4\right)^2-\left(y-5\right)^2\le-125-0\)

\(\Rightarrow A\le-125\)

Dấu "=" xảy ra khi \(\begin{cases}-\left(x-4\right)^2=0\\-\left(y-5\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=4\\y=5\end{cases}\)

Vậy...

 

 

 

Câu 1:

Ta có: \(M\left(x\right)=6x^3+2x^4-x^2+3x^2-2x^3-x^4+1-4x^3\)

\(=x^4+2x^2+1\)

\(=\left(x^2+1\right)^2\ge1\forall x\)

hay M(x) vô nghiệm(đpcm)

Câu 2:

Ta có: A(0)=5

\(\Leftrightarrow m+n\cdot0+p\cdot0\cdot\left(0-1\right)=5\)

\(\Leftrightarrow m=5\)

Ta có: A(1)=-2

\(\Leftrightarrow m+n\cdot1+p\cdot1\cdot\left(1-1\right)=-2\)

\(\Leftrightarrow5+n=-2\)

hay n=-2-5=-7

Ta có: A(2)=7

\(\Leftrightarrow5+\left(-7\right)\cdot2+p\cdot2\cdot\left(2-1\right)=7\)

\(\Leftrightarrow-9+2p=7\)

\(\Leftrightarrow2p=16\)

hay p=8

Vậy: Đa thức A(x) là 5-7x+8x(x-1)

\(=5-7x+8x^2-8x\)

\(=8x^2-15x+5\)

6 tháng 12 2016

a) Ta có : 2x=3y ->x/3=y/2 =x/21=y/14 (1)

5y=7z ->y/7=z/5 = y/14=z/10 (2)

Từ (1) và (2) ->x/21=y/14=z/10

Ta lại có:x/21=3x/21*3=3x/63

y/14=7y/7*14=7y/98

z/10=5z/5*10=5z/50

-> 3x/63=7y/98=5z/50

Áp dụng tính chất của dãy tỉ số bằng nhau :

3x/63=7y/98=5z/50 -> 3x-7y+5z/63-98+50=30/15=2

->3x/63=2 ->x=42

-> 7y/98=2 ->y=28

-> 5z/50=2 ->z=20

Vậy x=42;y=28;z=20

( Mình không chắc lắm, vì tính lại nó ra đáp số khác bạn thử tính lại xem, nếu sai cho minh xin lỗi.)

 

23 tháng 3 2018

saiucchegianroibucminhhum

Bài 1:

a) \(\left(x-3\right)^2+\left(y-1\right)^2+5\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

Do đó: \(\left(x-3\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-3\right)^2+\left(y-1\right)^2+5\ge5\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-3\right)^2+\left(y-1\right)^2+5\)là 5 khi x=3 và y=1

b) \(\left|x-3\right|+x^2+y^2+1\)

Ta có: \(\left|x-3\right|\ge0\forall x\)

\(x^2\ge0\forall x\)

\(y^2\ge0\forall y\)

Do đó: \(\left|x-3\right|+x^2+y^2\ge0\forall x,y\)

\(\Rightarrow\left|x-3\right|+x^2+y^2+1\ge1\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left|x-3\right|=0\\x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=0\\y=0\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left|x-3\right|+x^2+y^2+1\) là 1 khi x=3; x=0 và y=0

c) \(\left|x-100\right|+\left(x-y\right)^2+100\)

Ta có: \(\left|x-100\right|\ge0\forall x\)

\(\left(x-y\right)^2\ge0\forall x,y\)

Do đó: \(\left|x-100\right|+\left(x-y\right)^2\ge0\forall x,y\)

\(\Rightarrow\left|x-100\right|+\left(x-y\right)^2+100\ge100\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left|x-100\right|=0\\\left(x-y\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-100=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=100\\100-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=100\\y=100\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left|x-100\right|+\left(x-y\right)^2+100\) là 100 khi x=100 và y=100

Bài 2:

b) \(-125-\left(x-4\right)^2-\left(y-5\right)^2\)

Ta có: \(-125-\left(x-4\right)^2-\left(y-5\right)^2=-\left(x-4\right)^2-\left(y-5\right)^2-125\)

Ta có: \(\left(x-4\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-4\right)^2\le0\forall x\)

Ta có: \(\left(y-5\right)^2\ge0\forall y\)

\(\Rightarrow-\left(y-5\right)^2\le0\forall y\)

Do đó: \(-\left(x-4\right)^2-\left(y-5\right)^2\le0\forall x,y\)

\(\Rightarrow-\left(x-4\right)^2-\left(y-5\right)^2-125\le-125\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(y-5\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(-125-\left(x-4\right)^2-\left(y-5\right)^2\) là -125 khi x=4 và y=5

13 tháng 2 2020

phần a bài 2 đâu bn

Bài 3: 

\(\Leftrightarrow3^{2x+6}=3\)

=>2x+6=1

=>2x=-5

hay x=-5/2