Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko có chuyện chia mà được thương và số dư bằng nhau đâu bạn ạ
Từ đề bài ta có:
\(T=\dfrac{1+2}{2}.\dfrac{1+3}{3}.\dfrac{1+4}{4}...\dfrac{1+98}{98}.\dfrac{1+99}{99}\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)
\(=\dfrac{100}{2}\)
\(=50\).
\(T=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)
\(T=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}....\dfrac{99}{98}.\dfrac{100}{99}\)
\(T=\dfrac{3.4.5......99}{3.4.5......99}.\dfrac{100}{2}\)
\(T=50\)
Gọi thứ tự các ô trong dãy lần lượt là :
01;02;03;04;05;06;07 thì ta có:
01=04=07; 02=05 =176 ; 03=06=324;
Mà 01+02+03=1000 hay 01+176+324=1000
=>01+500=1000 => 01 = 500;
Số thích hợp để điền vào ô thứ nhất là 500...
Ta có :
\(A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+.........................+\dfrac{1}{81}+\dfrac{1}{10^2}\)
\(A=\dfrac{1}{4}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....................+\dfrac{1}{9^2}+\dfrac{1}{10^2}\)
Mà :
\(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}>\dfrac{1}{4.5}\)
\(\dfrac{1}{5^2}>\dfrac{1}{5.6}\)
.........................................
\(\dfrac{1}{9^2}>\dfrac{1}{9.10}\)
\(\dfrac{1}{10^2}>\dfrac{1}{10.11}\)
\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+........................+\dfrac{1}{9.10}+\dfrac{1}{10^2}\)
\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...................+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)
\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{11}\)
\(\Rightarrow A>\dfrac{7}{12}-\dfrac{1}{11}\)
\(\Rightarrow A>\dfrac{65}{132}\)\(\rightarrowđpcm\)
Ta có
A = \(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{81}+\dfrac{1}{100}\)
A = \(\dfrac{1}{4}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}+\dfrac{1}{10.10}\)
Vì \(\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
.................
\(\dfrac{1}{9.9}>\dfrac{1}{9.10}\)
\(\dfrac{1}{10.10}>\dfrac{1}{10.11}\)
=> A > \(\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)
A > \(\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)
A > \(\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{11}\)
A > \(\dfrac{7}{12}-\dfrac{1}{11}\)
A > \(\dfrac{65}{132}\)
Vậy A > \(\dfrac{65}{132}\) < đpcm)
viết dạng tổng quát của 1 số tự nhiên :
a, có 2 chữ số là: ab
(a \(\in\) N*/ 0 < a < 10) và (b \(\in\) N/ b < 10)
b, có 3 chữ số là: abc
(a \(\in\) N*/ 0 < a < 10) và (b \(\in\) N/ b < 10) và (b \(\in\) N/ b < 10).
Trong phần b, mink sửa:
.........và (c \(\in\) N/ c <10)
Bài này có mẹo á ; giải ra dễ lắm !!!
\(\left(100-1^2\right)\left(100-2^2\right)....\left(100-10^2\right)......\left(100-20^2\right)\\ =\left(100-1\right).\left(100-4\right)....0....\left(100-400\right)=0\\ \)
Chúc bạn học tốt !!!
Làm nhé! Nhưng thấy số to quá nên hơi hoang mang style ak!
Ta có: 7n2 + 8 = 7n2 - 42n + 42n - 252 + 260
= 7n.( n - 6) + 42.( n - 6) + 260
Vì n - 6 \(⋮\) n - 6 => \(\left\{{}\begin{matrix}7n.\left(n-6\right)⋮n-6\\42.\left(n-6\right)⋮n-6\end{matrix}\right.\)
=> Để 7n2 + 8 \(⋮\) n - 6 thì 260 \(⋮\) n - 6
=> n - 6 \(\in\) Ư(260) = \(\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20;\pm26;\pm52;\pm65;\pm130;\pm260\right\}\)
=> n \(\in\) \(\left\{7;5;8;4;10;2;11;1;16;-4;19;-7;26;-14;32;-20;58;-46;71;-59;136;-124;266;\right\};-254\)
a: \(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}=4\)
=>x=12; y2=1; z3=-8
=>x=12; \(y\in\left\{1;-1\right\}\); z=-2
b: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{z}{-17}=\dfrac{t}{9}\)
=>x/5=y/-3=z/-17=t/9=-2
=>x=-10; y=6; z=34; t=-18
Gọi số cần tìm là \(n\) \(\left(n\in N\right)\)
Vì \(n⋮5\) và \(n⋮27\)
\(\Rightarrow n\) có chữ số tận cùng là \(0\) hoặc \(5\)
+) Xét \(n=\)*\(975\) chia hết cho \(9\) \(\Rightarrow\) *\(=6\). Thử lại \(6975\) \(⋮̸\) \(27\) \(\rightarrow loại\)
+) Xét \(n=\)*\(970\) chia hết cho \(9\) \(\Rightarrow\) *\(=2\) Thử lại \(2970⋮27\) (TM)
Vậy \(n=2970\) là giá trị cần tìm
~~Chúc bn học tốt!!~~
theo mk nghĩ là 27 = 3.9. C/m chia hết cho 27 thì c/m chia hết cho 3 và 9 nhưng mà ƯCLN(3,9)=3 kia mà. Bạn giải thích đoạn đó giúp mk đc ko?