Giúp mik giải chi ti...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 7 2021

Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC

\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)

Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều

\(\Rightarrow ED=R\)

\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)

\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\) 

Áp dụng định lý talet:

\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)

\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\) 

\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)

\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)

\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)

Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)

\(\Rightarrow\Delta ABC\) đều

NV
27 tháng 7 2021

undefined

28 tháng 8 2021

Xét ta giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức :

 \(AB^2=BH.BC=BH.\left(CH+BH\right)\Rightarrow25=BH\left(\frac{144}{13}+BH\right)\Rightarrow BH=\frac{25}{13}\)cm 

\(\Rightarrow BC=HB+HC=\frac{144}{13}+\frac{25}{13}=\frac{196}{13}\)

* Áp dụng hệ thức : \(AC^2=HC.BC=\frac{144}{13}.\frac{169}{13}=144\Rightarrow AC=12\)cm 

2 tháng 3 2017

nhân 0 vào 2 vế ta có:

5x0=7x0

0=0

Vậy 5=7 điều phải chứng minh

2 tháng 3 2017

voi cach c/m cua bn thi DAI SO cua Toan loan het ak

VD:4^2=-4^2 chang han 0=-2=-99...=99...

DD
20 tháng 8 2021

\(\left(d\right):\frac{x}{a}+\frac{y}{b}=1\)\(\left(1\right)\)

Thế \(x=a,y=0\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(A\left(a,0\right)\)thuộc \(\left(d\right)\).

Thế \(x=0,y=b\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(B\left(0,b\right)\)thuộc \(\left(d\right)\).

Do đó ta có đpcm. 

19 tháng 9 2021

a, sinC = \(\frac{AB}{BC}\); tanC = \(\frac{AB}{AC}\)

cosC = \(\frac{AC}{BC}\); cotC = \(\frac{AC}{AB}\)

b, Xét tam giác ABC vuông tại A, đường cao AH

tanB = \(\frac{AC}{AB}=\sqrt{2}\Rightarrow AC=\sqrt{2}AB\)

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{12}=\frac{1}{AB^2}+\frac{1}{2AB^2}\Rightarrow AB\approx4,24\)cm 

\(\Rightarrow AC\approx4,24\sqrt{2}\)cm

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}\approx\sqrt{4,24^2+\left(4,24\sqrt{2}\right)^2}\approx7,34\)cm 

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

Kẻ đường cao xuất phát từ đỉnh góc \(70^0\). Chẳng hạn ta có phương trình sau :

\(x.\sin30^0=4\sin80^0\)