Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3\right).\left(x-2015\right)< 0\)
\(\Rightarrow\left(x-3\right)và\left(x-2015\right)\) phải khác dấu
\(\Rightarrow\left(x-3\right)< \left(x-2015\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x-3>0\\x-2015< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>3\\x< 2015\end{matrix}\right.\)
\(\Rightarrow3< x< 2015\)
\(\Rightarrow x\in\left\{4;5;6;7;8;...;2013;2014\right\}\)
( ko bt đúng hay sai nx )
thám tử
\(\left(x-3\right)\left(x-2015\right)< 0\)
Với mọi \(x\in R\) thì:
\(x-2015< x-3\)
Khi đó: \(\left\{{}\begin{matrix}x-2015< 0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2015\\x>3\end{matrix}\right.\)
Nên \(3< x< 2015\)
\(\left|x-\dfrac{1}{2}\right|+\left|y+\dfrac{2}{3}\right|+\left|x^2+xz\right|=0\)
\(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|\ge0\forall x\\\left|y+\dfrac{2}{3}\right|\ge0\forall y\\\left|x^2+xz\right|\ge0\forall x;z\end{matrix}\right.\) \(\Rightarrow\left|x-\dfrac{1}{2}\right|+\left|y+\dfrac{2}{3}\right|+\left|x^2+xz\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|=0\\\left|y+\dfrac{2}{3}\right|=0\\\left|x^2+xz\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{2}{3}\\z=-\dfrac{1}{2}\end{matrix}\right.\)
Với mọi x ta có:
|x - 2001| = |2001 - x|
=> A = |x - 2002| + |2001 - x|
Với mọi x ta cũng có:
|x - 2002| + | 2001 - x| \(\ge\)|(x - 2002) + (2001 - x)|
A \(\ge\) |1|
A \(\ge\) 1
Dấu bằng xảy ra <=> (x - 2002).(2001 - x) \(\ge\) 0
=> x - 2002 \(\ge\) 0; 2001 - x \(\ge\) 0 (1)
hoặc x - 2002 \(\le\) 0; 2001 - x \(\le\) 0 (2)
Từ (1) => x > hoặc = 2002; x < hoặc = 2001 => x không có giá trị thoả mãn
Từ (2) => x < hoặc = 2002 ; x > hoặc = 2001 => 2001 \(\le\) x \(\le\) 2002
Vậy 2001 \(\le\) x \(\le\) 2002 thì A có giá trị nhỏ nhất = 1
Bài 1:
x y m B A C 1 1 2 1
Qua B, vẽ tia Bm sao cho Bm // Ax
Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )
Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o
Ta có: góc B1 + góc B2 = góc ABC
Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )
=> góc B2 = 30o
Ta có: góc B2 + góc C1 = 30o + 150o = 180o
Mà hai góc này ở vị trí trong cùng phía
=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )
Ta lại có:
Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )
=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )
Bài 3:
A B C F E G N M H 1 2
a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )
+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC
=> 2 . AH < AB + AC
=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )
b) Chứng minh EF = BC
+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)
=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)
=> 2 . MG = BG
Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )
=> EM + MG = BG => EG = BG
+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)
=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)
=> 2 . GN = CG
Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )
=> FN + GN = CG => FG = CG
Góc G1 = góc G2 ( đối đỉnh )
Xét tam giác FEG và tam giác CBG có:
FG = CG ( chứng minh trên )
EG = BG ( chứng minh trên )
Góc G1 = góc G2 ( chứng minh trên )
=> tam giác FEG = tam giác CBG ( c.g.c )
=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )
\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
Vì \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)
để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy.....
\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)
Bài 1:
A B C . . / D E F / // // x x
a) Xét \(\Delta AED\) và \(\Delta CEF\)có:
AE = EC (gt)
\(\widehat{AED}=\widehat{CEF}\left(đđ\right)\)
DE = EF (gt)
Do đó: \(\Delta AED=\Delta CEF\left(c-g-c\right)\)
=> AD = CF (hai cạnh tương ứng)
mà AD = DB (D là trung điểm của BA)
=> CF = DB
b) Vì \(\Delta AED=\Delta CEF\left(c-g-c\right)\)
=> \(\widehat{DAE}=\widehat{FCE}\) (hai cạnh tương ứng)
=> DA // CF
mà D nằm giữa đoạn thẳng AB (D là trung điểm của AB)
=> DB // CF
=> \(\widehat{BDC}=\widehat{FCD}\left(soletrong\right)\)
Xét \(\Delta BDC\) và \(\Delta FCD\) có:
DC (chung)
\(\widehat{BDC}=\widehat{FCD}\left(cmt\right)\)
BD = CF (cmt)
Do đó: \(\Delta BDC=\Delta FCD\left(c-g-c\right)\)
c) Vì \(\Delta BDC=\Delta FCD\left(cmt\right)\)
=> \(\widehat{BCD}=\widehat{FCD}\) (hai cạnh tương ứng)
=> DF // BC (soletrong)
hay DE // BC
Vì \(\Delta BDC=\Delta FCD\left(cmt\right)\)
=> DF = BC (hai cạnh tương ứng)
mà \(DE=\dfrac{1}{2}DF\) (D là trung điểm của DF)
=> \(DE=\dfrac{1}{2}BC\)
\(x-y=9\Rightarrow x=9+y\Rightarrow y=x-9\)
Ta có:
\(\dfrac{4x-9}{3x+y}-\dfrac{4y+9}{3y+x}\)
\(=\dfrac{3x+x-9}{3x+y}-\dfrac{3y+y+9}{3y+x}\)
\(=\dfrac{3x+\left(x-9\right)}{3x+y}-\dfrac{3y+\left(y+9\right)}{3y+x}\)
\(=\dfrac{3x+y}{3x+y}-\dfrac{3y+x}{3y+x}\)
\(=1-1\)
\(=0\)
Vậy biểu thức \(\dfrac{4x-9}{3x+y}-\dfrac{4y+9}{3y+x}\)khi \(x-y=9\) là 0
\(x-y=9\Rightarrow y=x-9\) thay vào biểu thức B ta được :
\(B=\dfrac{4x-9}{3x+\left(x-9\right)}-\dfrac{4\left(x-9\right)+9}{3\left(x-9\right)+x}=\dfrac{4x-9}{4x-9}-\dfrac{4x-27}{4x-27}=1-1=0\)
Vậy giá trị của B là 0 tại \(x-y=9\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a^2}{b^2}=\dfrac{b^2}{c^2}=\dfrac{a^2+b^2}{b^2+c^2}\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{a^2+b^2}{b^2+c^2}\)
\(\Rightarrow\dfrac{a}{b}.\dfrac{b}{c}=\dfrac{a^2+b^2}{b^2+c^2}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{a^2+b^2}{b^2+c^2}\)
Vậy nếu \(\dfrac{a}{b}=\dfrac{b}{c}\) thì \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\left(đpcm\right)\)
bài 5) b)
Ta có: \(a+c=2b\)
\(\Rightarrow d\left(a+c\right)=2bd\) (1)
Ta lại có: \(2bd=c\left(b+d\right)\) (2)
Từ (1) và (2) suy ra: \(d\left(a+c\right)=c\left(b+d\right)\)
\(\Rightarrow ad+cd=bc+cd\)
\(\Rightarrow ad=bc\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\) (đpcm)
Câu 1:D
Câu 2:D
Câu 3:B
Câu 4:D
Câu 5:C
Câu 6:C
Câu 7:D
Câu 8:A
1)
- Phần hệ số: -5
- Phần biến: x3y
2)
- Để △ABC và △DEF bằng nhau thì cần thêm điều kiện BC=EF => △ABC = △DEF (cgc)
3)
a.
- Dấu hiệu ở đây là điểm kiểm tra môn Toán một tiết của mỗi học sinh lớp 7A.
-Mo=7
b.
x ̅= \(\dfrac{5.1+6.3+7.6+8.4+9.4+10.2}{20}=7.65\)
≈ 7.7 (điểm)
4)
a. A= 5x2y - 6xy - 2x2y + 6xy - 1
A= (5x2y - 2x2y) + (- 6xy + 6xy) -1
A= 3x2y -1
b. Thay x=2; y=-1 vào đa thức A có:
A = 3. 22. (-1) -1
A = 3. 4. (-1) -1
A= -12 - 1 = -13
Vậy giá trị của A tại x=2; y= -1 là -13
5) A(x) + B(x)=(3x3- 5x2 - 2x + 13)+(-2x3 + 3x2 + 2x - 5)
= (3x3 -2x3) + (- 5x2 + 3x2) + (- 2x + 2x) + (13 – 5)
= x^3 – 2x^2 + 8
6)
Cho 3x-12=0
3x = 0 + 12 = 12
x = 12 : 3
x = 6
Vậy nghiệm của đa thức 3x – 12 = 6
7)
a. Trong △PRK, PK < PR
=> gK > gR (quan hệ giữa cạnh và góc đối diện)
b. Áp dụng định lý Py-ta-go vào △PRK có:
KR2 = PK2+ PR2
= 122 + 162
= 144 + 256 = 400
=> KR= 20 cm
8.
a.
Xét △OAC vuông tại A và △OBC vuông tại B có:
OC chung
gOAC = gOBC
=> △OAC = △OBC (ch-gn)
b.
gOAC = gOBC
=> OC là đường phân giác
=> CB = CA (tính chất tia phân giác của một góc)
Vì △OAC = △OBC nên OA = OB (2 cạnh tương ứng)
=> △OAB cân tại A
Ta có:
CB = CA => C ∈ đường trung trực của AB (1)
OA = OB => O ∈ đường trung trực của AB (2)
Từ (1) và (2) => OC là đường trung trực của AB.
9)
a. Xét △AHC và △MHC vuông tại H có:
HC chung
gACH=gMCH (HC là đường phân giác)
=> △AHC =△MHC (cgv-gn)
=> MC = AC (2 cạnh tương ứng)
=> △AMC cân tại C
b. Cho OM ⊥ AB tại O, MI ⊥ AC tại I
Xét △AMI vuông tại I và △MAK vuông tại K có:
AM cạnh chung
gMAI = AMK (tg MAC cân)
=> △AMI = △MAK (cgv-gn)
Ta thấy: \(\widehat{I}=\widehat{A}=\widehat{M}=\widehat{K}=90\) độ
=> AIMO là hình chữ nhật
=> OM = AI; OA = MI
Xét △OMA và △IAM có:
AM chung
OM = AI (cmt)
OA = MI (cmt)
=>△OMA =△IAM (ccc)
=>△OMA =△IAM = tg KMA
=> g OAM = g KAM (2 góc tương ứng)
=> AM hay AH là đường phân giác g OAK
Mặt khác: AH ⊥ EN => AH là đường cao △ENA
AH là đường cao đồng thời là đường phân giác => △ENA cân
=> AH cũng là đường trung trực
Do đó: EH = HN nên H là trung điểm EN