K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 3 2020

Lời giải:

\(A-B=\frac{4}{2019^2}-\frac{4}{2019^4}\)

Dễ thấy $0< 2019^2< 2019^4\Rightarrow \frac{4}{2019^2}> \frac{4}{2019^4}$

$\Rightarrow A-B=\frac{4}{2019^2}-\frac{4}{2019^4}>0$

$\Rightarrow A>B$

thầy ơi vì sao \(A-B=\frac{4}{2019^2}-\frac{4}{2019^4}\)lolang

28 tháng 3 2020

\(\hept{\begin{cases}A=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}^{ }\\B=-\frac{1}{2020}-\frac{7}{2019^2}-\frac{5}{2019^3}-\frac{3}{2019^4}\end{cases}}\)

=>\(A-B=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}+\frac{1}{2020}+\frac{7}{2019^2}+\frac{5}{2019^3}+\frac{3}{2019^4}\)

\(=>A-B=\left(-\frac{3}{2019^2}+\frac{7}{2019^2}\right)+\left(-\frac{7}{2019^4}+\frac{3}{2019^4}\right)\)

=>\(A-B=\frac{4}{2019^2}+-\frac{4}{2019^4}\)

=>\(A-B=\frac{2019^2.4}{2019^4}-\frac{4}{2019^4}\)

=>\(A>B\)

cách này mình tự nghĩ 

28 tháng 3 2020

thank you \(v\text{er}y^{1000000000000}\)much

10 tháng 2 2020

sao ko có ai giúp mk vậy

10 tháng 2 2020

Thật ra tui cũng không rõ lắm đâu. Cậu thử nhân A với \(\dfrac{2019}{2020}\)rồi lại cộng lại với A thử coi nào <Chú Ý : chưa chắc đã đúng >

14 tháng 9 2020

\(\left(-\frac{5}{12}\right):\frac{7}{3}-\left(-\frac{5}{12}\right):\frac{7}{4}=\left(-\frac{5}{12}\right):\left(\frac{7}{3}-\frac{7}{4}\right)=\left(-\frac{5}{12}\right):\frac{7}{12}=-\frac{5}{7}\)

\(\left[\left(\frac{2}{5}\right)^0\right].\frac{19}{13}-\left(\frac{7}{3}\right)^{2019}.\frac{3}{7}^{2019}\)

\(=\left(\frac{2}{5}\right)^0.\frac{19}{13}-\left(\frac{7}{3}.\frac{3}{7}\right)^{2019}\)

\(=1.\frac{19}{13}-1^{2019}\)

\(=1.\frac{19}{13}-1\)

\(=\frac{19}{13}-1\)

\(=\frac{6}{13}\)

14 tháng 9 2020

                                                            Bài giải

a, \(\left(-\frac{5}{12}\right)\text{ : }\frac{7}{3}-\left(-\frac{5}{12}\right)\text{ : }\frac{7}{4}\)

\(=\left(-\frac{5}{12}\right)\text{ : }\frac{7}{3}-\left(-\frac{5}{12}\right)\text{ : }\frac{7}{4}\)

\(=\left(-\frac{5}{12}\right)\cdot\frac{3}{7}-\left(-\frac{5}{12}\right)\cdot\frac{4}{7}\)

\(=\frac{-15}{84}+\frac{20}{84}=\frac{5}{84}\)

b, \(\left[\left(\frac{2}{5}\right)^0\right]^{2020}\cdot\frac{19}{37}-\left(\frac{7}{3}\right)^{2019}\cdot\frac{3^{2019}}{7}\)

\(=1^{2020}\cdot\frac{19}{37}-\frac{7^{2019}}{3^{2019}}\cdot\frac{3^{2019}}{7}\)

\(=\frac{19}{37}-7^{2018}\)

8 tháng 2 2020

Tham khảo

https://hoc24.vn/hoi-dap/question/814814.html

8 tháng 2 2020

B=11.2+13.4+15.6+....+12019.2020

⇒2B=21.2+23.4+25.6+....+22019.2020

<1+12.3+13.4+14.5+15.6+....+12018.2019+12019.2020

2B<1+3−22.3+4−33.4+5−44.5+....+2019−20182018.2019+2020−20192019.2020

2B<1+12−13+13−14+...+12019−12020

2B<1+12−12020<1+12

B<34

---------------------

Đặt 22018=a;32019=b;52020=c(a,b,c>0)

A=aa+b+bb+c+cc+a>aa+b+c+ba+b+c+ca+b+c=1

⇒A>1>34>B

18 tháng 1 2019

\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)

\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)

\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất

Mà \(\left|2018x-2019\right|\ge0\)

\(\Rightarrow\left|2018x-2019\right|+1\ge1\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left|2018x-2019\right|=0\)

\(\Leftrightarrow x=\frac{2019}{2018}\)

Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)

18 tháng 1 2019

\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)

\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)

\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)

\(\Rightarrow5^x=3^{2x}\)

Mà \(\left(5;3\right)=1\)

\(\Rightarrow x=2x=0\)

17 tháng 11 2019

Bài 2:

\(C=\frac{2019}{\sqrt{x}+3}\)

Vì C có tử = 2019 ko đổi

\(\Rightarrow\) Để C đạt max thì mẫu phải đạt min

+Có:\(\sqrt{x}\ge0với\forall x\\ \Rightarrow\sqrt{x}+3\ge3\)

+Dấu ''='' xảy ra khi ......tự lm :))

\(\Rightarrow\)Mẫu đạt min = 3 khi x=...

\(\Rightarrow\)C max = ... khi x=....

17 tháng 11 2019

BÀi 1:

\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\\ \Leftrightarrow B=\left|x-2018\right|+\left|2020-x\right|+\left|x-2019\right|\\ \Leftrightarrow B=2+\left|x-2019\right|\\ \Leftrightarrow B\ge2\)

+Dấu ''='' xảy ra khi

\(\left\{{}\begin{matrix}x-2018\ge0\\x-2019\ge0\\x-2020\ge0\end{matrix}\right.\)

\(\Leftrightarrow x=2019\)

+Vậy \(B_{min}=2\) khi \(x=2019\)

10 tháng 7 2019

1

\(A=\frac{2019^{2019}+1}{2019^{2020}+1}< \frac{2019^{2019}+1+2018}{2019^{2020}+1+2018}=\frac{2019^{2019}+2019}{2019^{2020}+2019}=\frac{2019\left(2019^{2018}+1\right)}{2019\left(2019^{2019}+1\right)}\)

\(=\frac{2019^{2018}+1}{2019^{2019}+1}\)

10 tháng 7 2019

2

\(M=\frac{100^{101}+1}{100^{100}+1}< \frac{100^{101}+1+99}{100^{100}+1+99}=\frac{100^{101}+100}{100^{100}+100}=\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\)

\(=\frac{100^{100}+1}{100^{99}+1}=N\)

24 tháng 12 2019

Ta có: \(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}=\frac{a-b}{2017-2018}=\frac{b-c}{2018-2019}=\frac{a-c}{2017-2019}.\)

\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{a-c}{-2}\)

\(\Rightarrow\frac{a-b}{-1}.\frac{b-c}{-1}=\left(\frac{a-c}{-2}\right)^2\)

\(\Rightarrow\frac{\left(a-b\right).\left(b-c\right)}{1}=\frac{\left(a-c\right)^2}{\left(-2\right)^2}\)

\(\Rightarrow\frac{\left(a-b\right).\left(b-c\right)}{1}=\frac{\left(a-c\right)^2}{4}.\)

\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(a-c\right)^2.1\)

\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(a-c\right)^2\left(đpcm\right).\)

Chúc bạn học tốt!

24 tháng 12 2019

nhanh lên nhé sáng mai mình ktra rồi