Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
- a,(2+xy)^2=4+4xy+x^2y^2
- b,(5-3x)^2=25-30x+9x^2
- d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1
bài 1
a, \(x^2+9y^2-6xy=\left(x-3y\right)^2\)
thay x = 19 , y = 3 vào biểu thức trên ta có
\(\left(19-3.3\right)^2=100\)
b, \(x^3-6x^2y+12xy^2-8y^3=\left(x-2y\right)^3\)
thay x = 12 và y = -4 vào biểu thức trên ta có
\(\left(12-2.\left(-4\right)\right)^3=8000\)
bài 4
a, \(x\left(4x^2-1\right)=0\)
=> \(x\left(2x-1\right)\left(2x+1\right)=0\)
=> \(\left[{}\begin{matrix}x=0\\2x-1=0\\2x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
b, \(x^3-x^2-x+1=0\)
=> \(x^2\left(x-1\right)-\left(x-1\right)=0\)
=> \(\left(x-1\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x^2-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c, \(2x^2-5x-7=0\)
=> \(2x^2-7x+2x-7=0\)
=> \(2x\left(x+1\right)-7\left(x+1\right)=0\)
=> \(\left(x+1\right)\left(2x-7\right)=0\)
=> \(\left[{}\begin{matrix}x+1=0\\2x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{2}\end{matrix}\right.\)
Bài 2: Rút gọn biểu thức:
a) \(3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)
\(=3\left(x^2-2xy+y^2\right)-2\left(x^2+2xy+y^2\right)-\left(x^2-y^2\right)\)
\(=3x^2-6xy+3y^2-2x^2+4xy+2y^2-x^2+y^2\)
\(=2y^2-2xy\)
b)\(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)\)
\(=2\left(2x+5\right)^2-3\left(1+4x\right)\left(1-4x\right)\)
\(=2\left(4x^2+20x+25\right)-3\left(1-16x^2\right)\)
\(=8x^2+40x+50-3+48x^2\)
\(=56x^2+40x+47\)
Bài 1:
1.1
a) Ta có: \(A=\left(x+y\right)\left(x-y\right)+x\left(2x-1\right)+y\left(y+1\right)\)
\(=x^2-y^2+2x^2-x+y^2+y\)
\(=3x^2-x+y\)
b) Thay x=1 và y=2018 vào biểu thức \(A=3x^2-x+y\), ta được:
\(A=3\cdot1^2-1+2018\)
\(=2+2018=2020\)
Vậy: Khi x=1 và y=2018 thì A=2020
1.2
a) Ta có: \(2x^2\left(x^2-3x+1\right)\)
\(=2x^2\cdot x^2-2x^2\cdot3x+2x^2\cdot1\)
\(=2x^4-6x^3+2x^2\)
b) Ta có: \(\left(2x-1\right)\left(6x^2+3x-3\right)\)
\(=2x\cdot6x^2+2x\cdot3x-2x\cdot3-6x^2-3x+3\)
\(=12x^3+6x^2-6x-6x^2-3x+3\)
\(=12x^3-9x+3\)
1.3
a) Ta có: \(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
b) Ta có: \(x^2-xy-8x+8y\)
\(=x\left(x-y\right)-8\left(x-y\right)\)
\(=\left(x-y\right)\left(x-8\right)\)
1.1
a) A= (x+y).(x-y) + x(2x-1) + y(y+1)
= x2- x.y + x.y - y2 + 2x2 - x +y2 + y = 3x2 - x + y
b) Ta có A= 3x2 - x + y; thay x=1,y=2018 vào biểu thức:
A= 3.12 - 1+ 2018 = 2020
1.3
a)x3 - 2x2 + x = x.( x2 - 2x + 1) = x.(x-1)2
b) x2 - xy - 8x + 8y = x.(x - y) - 8.(x - y)= (x - y).(x-8).
Xin lỗi nha, tớ không biết làm bài 1.2.
Chúc bạn học tốt!!
Bạn làm bài kiểm tra hả sao nhiều bài tek. Mk làm mất khá nhiều tg luôn đó
Có một số câu thì mình không làm được. Mong bạn thông cảm!!!
Bài 2 :
Câu a : \(y\left(y^3+y^2-y-2\right)-\left(y^2-2\right)\left(y^2+y+1\right)\)
\(=y^4+y^3-y^2-2y-y^4-y^3-y^2+2y^2+2y+2\)
\(=2\) \(\Rightarrow\) ko phụ thuộc vào biến .
Câu b : \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2\)
\(=29\Rightarrow\) ko thuộc vào biến
Câu c : \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)
\(=3x^2+15x-3x^2+3x-18x+18\)
\(=18\) \(\Rightarrow\) ko thuộc vào biến
Câu d : \(\left(2x+6\right)\left(4x^2-12x+36\right)-8x^3+5\)
\(=8x^3-24x^2+72x+24x^2-72x+216-8x^3+5\)
\(=221\) \(\Rightarrow\) không thuộc vào biến
câu 1) a) \(\left(x^2+2xy+y^2\right)\left(x+y\right)=\left(x+y\right)^2\left(x+y\right)=\left(x+y\right)^3\)
b) \(y\left(y^3+y^2-3y-2\right)+\left(y^2-2\right)\left(y^2+y-1\right)\)
\(=y^4+y^3-3y^2-2y+y^4+y^3-y^2-2y^2-2y+2\)
\(=2y^4+2y^3-6y^2-4y+2=2y\left(y^3+y^2-3y-2\right)+2\)
\(=2y\left(y+2\right)\left(y^2-y-1\right)+2=2\left(y^2+2y\right)\left(y^2-y-1\right)+2\)
\(=2\left(y^2+2y\right)\left(y^2-y-1+1\right)=2\left(y^2+2y\right)\left(y^2-y\right)\)
c) \(6x^2-\left(2x+5\right)\left(3x-2\right)=6x^2-\left(6x^2-4x+15x-10\right)\)
\(\Leftrightarrow6x^2-6x^2+4x-15x+10=-11x+10\)
d) \(\left(2x-1\right)\left(3x+1\right)+\left(3x+4\right)\left(3-2x\right)\)
\(\)\(=6x^2+2x-3x-1+9x-6x^2+12-8x=11\)
e) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)\)
\(=21x-15x^2-35+25x-\left(10x-15x^2+4-6x\right)\)
\(21x-15x^2-35+25x-10x+15x^2-4+6x=42x-39\)