Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Để căn thức có nghĩa thì
\(5-7x\ge0\Leftrightarrow-7x\ge-5\Leftrightarrow x\le\dfrac{5}{7}\)
b/ Để căn thức có nghĩ thì:
\(\dfrac{2}{x}\ge0\) mà (x khác 0) => x > 0
c/ Để căn thức có nghĩa thì:
\(\left\{{}\begin{matrix}x+3\ne0\\-\dfrac{2}{x+3}\ge0\end{matrix}\right.\)
\(\Rightarrow\dfrac{-2}{x+3}>0\Leftrightarrow x+3< 0\Leftrightarrow x< -3\)
d/ Để căn thức có nghĩa thì: \(\left\{{}\begin{matrix}3-x\ne0\\\dfrac{x-2}{3-x}\ge0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2\ge0\\3-x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2\le0\\3-x< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x< 3\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x>3\end{matrix}\right.\end{matrix}\right.\)<=> \(2\le x< 3\)
e/ Để căn thức có nghĩ thì:
\(x^2-x-12\ge0\)
\(\Leftrightarrow x^2+3x-4x-12\ge0\)
\(\Leftrightarrow x\left(x+3\right)-4\left(x+3\right)\ge0\)
\(\Leftrightarrow\left(x+3\right)\left(x-4\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\x-4\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\x-4\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-3\end{matrix}\right.\)
Vậy x >= 4 hoặc x<= 3 thì căn thức có nghĩa
\(a,\sqrt{2x-1}\)
\(\sqrt{2x-1}\) có nghĩa khi:
\(2x-1\ge0\\ \Leftrightarrow2x\ge1\\ \Leftrightarrow x\ge\dfrac{1}{2}\)
\(b,\sqrt{\dfrac{3}{x^{ }+1}}\)
\(\sqrt{\dfrac{3}{x+1}}\) có nghĩa khi:
\(x+1\ge0\\ \Leftrightarrow x\ge-1\)
\(c,\sqrt{3x^2}\)
\(\forall x\in Rvì3x^2\ge0\)
\(d,\sqrt{\dfrac{3}{x^2}}\\ \forall x\in Rvìx^2\ge0\)
\(e,\sqrt{\dfrac{-1}{x^2+2}}\)
Không có nghĩa \(\forall x\in R\)
\(f,\sqrt{\dfrac{2}{3}x-\dfrac{1}{5}}\)
\(\sqrt{\dfrac{2}{3}x-\dfrac{1}{5}}\) có nghĩa khi:
\(\dfrac{2}{3}x-\dfrac{1}{5}\ge0\\ \)
\(\Leftrightarrow\)\(\dfrac{2}{3}x\ge\dfrac{1}{5}\\ \)
\(x\ge\dfrac{1}{10}\)
a/ \(x^2+4x-5>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -5\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}2x-1\ge0\\x-\sqrt{2x-1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\\left\{{}\begin{matrix}x>0\\x^2>2x-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}x^2-3\ge0\\1-\sqrt{x^2-3}\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}\ge0\\-2x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn
e/ \(\left\{{}\begin{matrix}3x-1\ge0\\5x-3\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\ge\dfrac{3}{5}\end{matrix}\right.\) \(\Rightarrow x\ge\dfrac{3}{5}\)
a/ đkxđ: \(x+3\ge0\Leftrightarrow x\ge-3\)
b/ \(\left\{{}\begin{matrix}4x-1\ge0\\x\ne\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{4}\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
c/ \(2-x^2>0\Leftrightarrow x^2< 2\Leftrightarrow-\sqrt{2}< x< \sqrt{2}\)
d/ \(6-x-x^2>0\Leftrightarrow\left(x+3\right)\left(2-x\right)>0\Leftrightarrow\left(x+3\right)\left(x-2\right)< 0\Leftrightarrow-3< x< 2\)
a) Để : \(\sqrt{3x-2}\) xác định thì :
3x - 2 ≥ 0 ⇔ x ≥ \(\dfrac{2}{3}\)
KL...........
b) Để : \(\sqrt{4-2x}\) xác định thì :
4 - 2x ≥ 0 ⇔ x ≤ 2
KL.......
c) Để : \(\sqrt{-4x}\) xác định thì :
-4x ≥ 0 ⇔ x ≤ 0
KL.......
d) Để : \(\sqrt{x^2-2x+1}\) xác định thì :
x2 - 2x + 1 ≥ 0 ⇔ ( x - 1)2 ≥ 0 ( luôn đúng ∀x)
KL.........
Còn lại tương tự bạn nhé.
1)
a) \(6=\sqrt{36}< \sqrt{40}\)
b) \(3=\sqrt{9}< \sqrt{10}\)
c) \(2\sqrt{3}< 2\sqrt{4}=4\)
d) \(3\sqrt{2}=\sqrt{18}< \sqrt{36}=6\)
e) \(7=\sqrt{49}< \sqrt{50}\)
2)
a) \(x\ge0\)
b) \(-2x+1\ge0\Leftrightarrow-2x\ge-1\Leftrightarrow x\le\dfrac{1}{2}\)
c) \(5-a\ge0\Leftrightarrow a\le5\)
d) \(2x-3>0\Leftrightarrow2x>3\Leftrightarrow x>\dfrac{3}{2}\)
e) \(-3< x< 1\)
f) \(-3x\ge-4\Leftrightarrow x\le\dfrac{4}{3}\)
g) \(x^2-2x-3\ge0\Leftrightarrow\left(x+1\right)\left(x-3\right)\ge0\Leftrightarrow-1\le x\le3\)
a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)
=>4x-4=2x-3
=>2x=1
hay x=1/2
b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)
=>(2x-3)=4x-4
=>4x-4=2x-3
=>2x=1
hay x=1/2(nhận)
c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=-3/2 hoặc x=7/2
e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>căn (x-5)=2
=>x-5=4
hay x=9
cai nay hinh nhu la co trong nang cao hat trien lo 8 thi phai cho
Lời giải:
a) ĐK: \(\left\{\begin{matrix} x-2\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x-2>0\Leftrightarrow x>2\)
b) ĐK: \(\left\{\begin{matrix} x+2\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x\geq 2\)
c) ĐK: \(\left\{\begin{matrix} x^2-4\neq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-2)(x+2)\neq 0\\ x\geq 2\end{matrix}\right.\Leftrightarrow x>2\)
d) ĐK: \(3-2x>0\Leftrightarrow x< \frac{3}{2}\)
e) ĐK: \(2x+3>0\Leftrightarrow x> \frac{-3}{2}\)
f) ĐK: \(x+1< 0\Leftrightarrow x< -1\)
a: ĐKXD: 3x-1>=0
hay x>=1/3
b: ĐKXĐ: x2-2>=0
hay \(\left[{}\begin{matrix}x>=\sqrt{2}\\x< =-\sqrt{2}\end{matrix}\right.\)
d: ĐKXĐ: 2x-15>0
hay x>15/2
e: ĐKXĐ: (x-1)(x-3)>=0
=>x>=3 hoặc x<=1