K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

Chọn B.

Đặt t = x2, t 0.

Phương trình trở thành: t2 – 2(m + 1)t + 2m + 1 = 0  (2)

Phương trình (1) có bốn nghiệm phân biệt khi và chỉ khi PT (2) có hai nghiệm dương phân biệt t2 > t1 > 0.

Khi đó PT(2) có bốn nghiệm là: 

Bốn nghiệm này lập thành cấp số cộng khi :

Theo định lý viet thì : 

Vậy m = 4 hoặc  là những giá trị cần tìm.

8 tháng 12 2017

Chọn C.

Đặt t = x2.

Khi đó ta có phương trình: t2 – 2(m + 1)t + 2m + 1 = 0

Phương trình đã cho có nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm dương phân biệt 

+ Với điều kiện trên thì  phương trình (*) có hai nghiệm dương phân biệt là t1; t2.

Khi đó phương trình đã cho có bốn nghiệm phân biệt là .

Bốn nghiệm này lập thành một cấp số cộng khi

Theo định lý Vi-ét ta có: t1 + t2 = 2(m + 1) ; t1.t2 = 2m + 1.

Suy ra ta có hệ phương trình 

Chỉ có m = 4  thỏa mãn điều kiện .

Do đó 43 = 64.

6 tháng 5 2018

Giả sử 4 nghiệm phân biệt của phương trình là x1,x2,x3,x4.đặtx2=y≥0, ta được phương trình y2-(3m+5)y+(m+1)2=0(1)

Ta phải tìm m sao cho (1) có hai nghiệm dương phân biệt 0 < y1 < y2. Khi đó thì (1) có bốn nghiệm là: x1=-√(y2),x2=-√(y1,) x3=√(y1),x4=√(y2).

Theo đầu bài bốn nghiệm lập thành một cấp số cộng, nên x3+x1=2x2 và x4+x2=2x3

Áp dụng định lý Vi-et cho phương trình (1). Ta có hệ:

Δ = 3 m + 5 2 − 4 m + 1 2 > 0 S = 3 m + 5 > 0 P = m + 1 2 > 0 ⇔ 5 m 2 + 22 m + 21 > 0 m > − 5 3 m ≠ − 1 ⇔ m > − 7 5 m < − 3 m > − 5 3 m ≠ − 1

⇒ m > − 7 5 và  m ≠ − 1

Thay   9 y 1 = y 2 vào định lí Viet  y 1 + y 2 = 3 m + 5 y 1 . y 2 = m + 1 2

           

Giải (*)

 

  19 m 2 − 70 m − 125 = 0 ⇔ m = 5 m = − 25 19           

Chọn B

NV
31 tháng 1 2021

1.

Do 3 nghiệm lập thành cấp số cộng \(\Rightarrow2x_2=x_1+x_3\)

Mà \(x_1+x_2+x_3=3m\)

\(\Rightarrow3x_2=3m\Rightarrow x_2=m\)

Thay lại pt ban đầu:

\(m^3-3m^3+2m\left(m-4\right)m+9m^2-m=0\)

\(\Leftrightarrow m^2-m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

- Với \(m=0\Rightarrow x^3=0\Rightarrow\) pt có đúng 1 nghiệm (ktm)

- Với \(m=1\Rightarrow x^3-3x^2-6x+8=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=4\end{matrix}\right.\) (thỏa mãn)

Vậy \(m=1\)

6 tháng 4 2019

NV
19 tháng 3 2022

Đặt \(f\left(x\right)=m\left(x-1\right)^3\left(x^2-4\right)+x^4-3\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R

\(f\left(1\right)=-2< 0\)

\(f\left(2\right)=13>0\)

\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc khoảng (1;2)

\(f\left(-2\right)=13>0\Rightarrow f\left(1\right).f\left(-2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc khoảng (-2;1)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm phân biệt