Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{2}-1\right):\left(\frac{1}{3}-1\right):\left(\frac{1}{4}-1\right):...:\left(\frac{1}{100}-1\right)\)
\(=\frac{-1}{2}:\frac{-2}{3}:\frac{-3}{4}:...:\frac{-98}{99}:\frac{-99}{100}\)
\(=\frac{-1\cdot3\cdot4\cdot...\cdot99\cdot100}{2\cdot\left(-2\right)\cdot\left(-3\right)\cdot...\cdot\left(-98\right)\cdot\left(-99\right)}\)
\(=\frac{\left(-1\right)^{99}\cdot100}{2\cdot\left(-2\right)}=\frac{-1\cdot100}{-4}=\frac{-100}{4}=-25\)
- P/s: Không chắc chắn nhé!
\(=-\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)
\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\)
\(=-\frac{1.3}{2^2}.\frac{2.4}{3^2}.....\frac{99.101}{100^2}\)
\(=-\frac{1.2....99}{2.3...100}.\frac{3.4....101}{2.3...100}\)
\(=-\frac{1}{100}.\frac{101}{2}=\frac{-101}{200}\)
Học good
\(=-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)
\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\)
\(=-\frac{1.3}{2^2}\cdot\frac{2.4}{3^2}...\frac{99.101}{100^2}\)
\(=-\frac{1.2...99}{2.3...100}\cdot\frac{3.4...101}{2.3.100}\)
\(=-\frac{1}{100}\cdot\frac{101}{2}\)
\(=-\frac{101}{200}\)
2.\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.......\frac{49}{50}=\frac{1}{50}\)
a) \(=\frac{3}{2}.\frac{4}{3}....\frac{100}{99}=\frac{100}{2}=50\)
a) =3/2 . 4/3 . 5/4 ...100/99
=\(\frac{3.4.5...100}{2.3.4..99}\)
=\(\frac{100}{2}\)
b) =
\(H=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{100}\right)\)
\(\Leftrightarrow H=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\cdot\cdot\cdot\cdot\frac{99}{100}\)
\(\Leftrightarrow H=\frac{1.2.3.4.....99}{2.3.4.5.....100}\)
\(\Leftrightarrow H=\frac{1}{100}\)
\(H=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}\)
\(H=\frac{1.2.3.4...99}{2.3.4.5...100}\)
\(H=\frac{1}{100}\)
Vậy \(H=\frac{1}{100}.\)