Công thức | Chuyển động thẳng đều | Chuyển động thẳng biến đổi đều | Chuyển động rơi tự do | Chuyển động ném ngang |
Vận tốc | \(v=\frac{s}{t}\) | \(v=v_0+at\) | \(v=gt\) | \(v=\sqrt{v_0^2+g^2t^2}\) |
Quãng đường (hoặc tầm bay xa) | \(s=vt\) | \(s=v_0t+\frac{1}{2}at^2\) | \(s=\frac{1}{2}gt^2\) | \(L=v_0\sqrt{\frac{2h}{g}}\) |
Gia tốc | \(a=0\text{ m/s}^2\) | \(a=\frac{v-v_0}{t}\) | \(g\approx9,8\text{ m/s}^2\) | \(g\approx9,8\text{ m/s}^2\) |
Thời gian chuyển động | \(t=\frac{s}{v}\) | \(----\) | \(t=\sqrt{\frac{2h}{g}}\) | \(t=\sqrt{\frac{2h}{g}}\) |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giá trị trung bình của thời gian rơi là:
\(\begin{array}{l}
\bar t = \frac{{{t_1} + {t_2} + {t_3} + {t_4} + {t_5}}}{5}\\
\Rightarrow \overline t = \frac{{0,2027 + 0,2024 + 0,2023 + 0,2023 + 0,2022}}{5} \approx 0,2024(s)
\end{array}\)
b)
- Sai số tuyệt đối ứng với 5 lần đo là:
+ Lần đo 1: \(\Delta {t_1} = \left| {\overline t - {t_1}} \right| = \left| {0,2024 - 0,2027} \right| = {3.10^{ - 4}}(s)\)
+ Lần đo 2: \(\Delta {t_2} = \left| {\overline t - {t_2}} \right| = \left| {0,2024 - 0,2024} \right| = 0(s)\)
+ Lần đo 3: \(\Delta {t_3} = \left| {\overline t - {t_3}} \right| = \left| {0,2024 - 0,2023} \right| = {10^{ - 4}}(s)\)
+ Lần đo 4: \(\Delta {t_4} = \left| {\overline t - {t_4}} \right| = \left| {0,2024 - 0,2023} \right| = {10^{ - 4}}(s)\)
+ Lần đo 5: \(\Delta {t_5} = \left| {\overline t - {t_5}} \right| = \left| {0,2024 - 0,2022} \right| = {2.10^{ - 4}}(s)\)
- Sai số tuyệt đối trung bình của phép đo thời gian là:
\(\overline {\Delta t} = \frac{{\Delta {t_1} + \Delta {t_2} + \Delta {t_3} + \Delta {t_4} + \Delta {t_5}}}{5} = \frac{{{{3.10}^{ - 4}} + 0 + {{2.10}^{ - 4}} + {{2.10}^{ - 4}} + {{10}^{ - 4}}}}{5} = 1,{6.10^{ - 4}}(s)\)
1.
Lập bảng ghi số liệu.
Độ dịch chuyển (m) | 0 | 200 | 400 | 600 | 800 | 1000 | 800 |
Thời gian (s) | 0 | 50 | 100 | 150 | 200 | 250 | 300 |
2.
Vẽ đồ thị:
Từ bảng số liệu ta vẽ được đồ thị như hình sau: