K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2021

a) Xét ΔDKA và ΔCHB có:

∠AKD = ∠BHC = 900 (vì AK và BH là các đường cao)

AD = BC (cạnh bên của hình thang cân)

∠ADK = ∠BCH ( định nghĩa hình thang cân)

=> ΔDKA = ΔCHB (cạnh huyền - góc nhọn)

=> DK = CH (2 cạnh tương ứng)

Vậy DK = CH

b) Tứ giác ABHK là hình thang có 2 cạnh bên AK và BH song song nên AB = KH = 3 cm

Ta có: DK + KH + HC = 13 

Mà DK = CH

=> 2HC + 3 = 13

=> 2HC =10

=>HC =5 (cm)

Áp dụng định lí Py-ta-go cho ΔBHC vuông tại H được:

BC2 = HC2 + BH2

=> BH2 = BC2 - HC2

=> BH2 = 132 - 52

=> BH2 = 144

=> BH = 12 (cm)  (vì BH >0)

Vậy BH = 12 cm

27 tháng 8 2021

Cho mình xin hình đc ko ạ

10 tháng 8 2018

Bạn vẽ hình ra được ko?

27 tháng 7 2016

BC=AD hay BC=CD vậy bạn

27 tháng 7 2016

minh lam duoc roi ban 

Bài 1: Cho hình thang cân ABCD ( AB // CD) Gọi E là giao điểm của AC và BD. Chứng minh EA = EB.Bài 2: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH. a) Chứng minh rằng CH=DK. b) Tính độ dài BH.Bài 3: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.a) Chứng minh rằng BD vuông góc với BC. b) Tính chu vi hình thang.Bài 4 : Cho hình thang MNPQ (MN là đáy nhỏ) có 2...
Đọc tiếp

Bài 1: Cho hình thang cân ABCD ( AB // CD) Gọi E là giao điểm của AC và BD. Chứng minh EA = EB.

Bài 2: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH.

a) Chứng minh rằng CH=DK.

b) Tính độ dài BH.

Bài 3: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.

a) Chứng minh rằng BD vuông góc với BC.

b) Tính chu vi hình thang.

Bài 4 : Cho hình thang MNPQ (MN là đáy nhỏ) có 2 đường chéo MP và NQ cắt nhau tại O và NMPˆ=MNQˆA.

a) Chứng minh tam giác OMN và OPQ cân tại O.

b) Chứng minh tứ giác MNPQ là hình thang cân.

c) Qua O vẽ đường thẳng EF//QP (E∈MQ,F∈NP). Chứng minh MNFE, FEQP là những hình thang cân.

Bài 5: Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.

a) Chứng minh rằng ΔOAB cân.

b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.

c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.

1

Bài 1: 

Xét ΔABC và ΔBAD có 

AB chung

BC=AD

AC=BD

Do đó: ΔABC=ΔBAD

Suy ra: \(\widehat{BAC}=\widehat{ABD}\)

hay \(\widehat{EAB}=\widehat{EBA}\)

hay ΔEAB cân tại E

20 tháng 7 2016

moi nguoi giai ho minh voi

a: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có

AD=BC

góc D=góc C

=>ΔAKD=ΔBHC

=>CH=DK

Xét tứ giác ABHK có

AB//HK

AK//HB

=>ABHK là hình bình hành

=>AB=HK

b: KH=AB=7cm

=>DK+HC=13-7=6cm

=>DK=HC=6/2=3cm

\(BH=\sqrt{13^2-3^2}=\sqrt{160}=4\sqrt{10}\left(cm\right)\)

\(S_{ABCD}=\dfrac{1}{2}\cdot BH\cdot\left(AB+CD\right)\)

\(=\dfrac{1}{2}\cdot4\sqrt{10}\left(7+13\right)=40\sqrt{10}\left(cm^2\right)\)

24 tháng 7 2018

A B C D 3cm 13cm K H

vì tứ giác ABCD là hình thang cân nên suy ra AD=BC

mà BC=CD suy ra AD=BC=CD=13cm

mà ABCD là hình thang cân thì AB//CD

suy ra đường cao AK,BH bằng nhau

từ đó suy ra CH=DK

b, xét tứ giác ABHK có

AB//HK(H,K đều nằm trên CD)

AK=BH

suy ra tứ giác ABHK là hình bình hành

mà hình bình hành có 1 góc bằng 900 thì sẽ là hình chữ nhật

vì ABHK hình chữ nhật

suy ra AB=HK=3cm mà theo câu a thì DK=HC =\(\dfrac{CD-KH}{2}=\dfrac{13-3}{2}=5\left(cm\right)\) vậy CH bằng 5cm
25 tháng 7 2018

Cảm ơn bạn nhiều nha

a: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có

AD=BC

góc D=góc C

=>ΔAKD=ΔBHC

=>CH=DK

b: Xét tứ giác ABHK có

AB//HK

AK//HB

=>ABHK là hình bình hành

=>AB=HK=3cm

=>DK+HC=10cm

=>DK=HC=10/2=5cm

BH=căn 13^2-5^2=12cm