Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Do ACDE là hình thang cân nên
AC//DE suy ra AB//ED \( \Rightarrow {{\widehat B} _1} = {{\widehat E} _3},{{\widehat A} _1} = {{\widehat E} _1} = {60^0};{{\widehat C} _1} = {{\widehat D} _1} = {60^0}\)
Mà: AE//BD \( \Rightarrow {{\widehat B} _2} = {{\widehat E} _2}\)
Xét \(\Delta ABE\) và \(\Delta B{\rm{D}}E\) có: \({{\widehat B} _1} = {{\widehat E} _3}\) ; BE chung
\(\begin{array}{l}{{{\widehat B} }_2} = {{{\widehat E} }_2} \Rightarrow \Delta ABE = \Delta B{\rm{D}}E \Rightarrow A{\rm{E}} = B{\rm{D}} = 2m.\\AB = E{\rm{D}} = 2m\end{array}\)
Xét \(\Delta BC{\rm{D}}\) có \({{\widehat C} _1} = {60^0};B{\rm{D}} = C{\rm{D}} = 2m \Rightarrow \Delta BC{\rm{D}}\) đều.
Xét \(\Delta A{\rm{E}}B\) có \({{\widehat A} _1} = {60^0};AB = A{\rm{E}} = 2m \Rightarrow \Delta A{\rm{E}}B\) đều.
Vì: \(\Delta A{\rm{E}}B\) đều suy ra: BE = 2 m.
Xét \(\Delta BE{\rm{D}}\) có BD = BE = ED = 2m \( \Rightarrow \Delta BE{\rm{D}}\) đều.
b, Vì \(\Delta ABE,\Delta BC{\rm{D}}\) là các tam giác đều nên AB = BC = 2m.
Suy ra AC = AB + BC = 4m.
Do \(\Delta B{\rm{D}}C\) đều nên H là trung điểm của BC.
Suy ra HC = HB =\(\dfrac{{BC}}{2} = 1\)
Xét \(\Delta DHC\) vuông tại H ta có:
\(D{C^2} = D{H^2} + H{C^2}\) (theo định lý pythagore)
\(\begin{array}{l} \Rightarrow D{H^2} = D{C^2} - H{C^2} = {2^2} - {1^2} = 3\\ \Rightarrow DH = \sqrt 3 \end{array}\)
c, Diện tích hình thang cân AEDC là:
\({S_{A{\rm{ED}}C}} = \dfrac{1}{2}DH.(AC + E{\rm{D}}) = \dfrac{1}{2}\sqrt 3 (2 + 4) = 3\sqrt 3 (c{m^2})\)
Vậy diện tích mặt cắt phần chứa nước: \(3\sqrt 3 c{m^2}\)
Gọi CB là chiều dài của mái che sân khấu. AB = 7- 6 = 1m, AC = 5m.
Từ C kẻ đường thẳng vuông góc với khung trước của sân khấu tại A. Ta có \( \Delta ABC \) vuông tại A.
Áp dụng định lí Pythagore trong tam giác vuông tại A. ta có:
\(C{B^2} = A{C^2} + A{B^2} = {1^2} + {5^2} = 26 \Rightarrow CB = \sqrt {26} = 5,10(m)\)
Khoảng cách từ điểm xa nhất của bóng cây đến đỉnh cây bằng \(\sqrt{3^2+4^2}=5\left(m\right)\) (áp dụng định lý Py-ta-go).
Thể tích của khối gỗ hình lập phương là:
\( V_{lp} = 30^3 = 27000 (cm^3)\)
Thể tích vật thể có hình chóp tứ giác đều là:
\(V_{hc} = \frac{1}{3}.30^2.30 = 9000 (cm^3)\)
Thể tích phần khúc gỗ bị cắt bỏ là:
\( V = V_{lp} - V_{hc} = 27000 - 9000 = 18000 (cm^3)\)
Vậy thể tích của phần khúc gỗ đã bị cắt bỏ là \(18000 cm^3\)
Hình chóp tứ giác đều S.ABCD có:
- Mặt đáy ABCD là hình vuông.
- Các mặt bên là SAB, SBC, SCD, SDA là những tam giác cân tại S.
- Các cạnh đáy AB, BC, CD, DA bằng nhau.
- Các cạnh bên SA, SB, SC, SD bằng nhau.
- S gọi là đỉnh của hình chóp đều S. ABCD
Giả sử viên gạch dạng hình thoi là hình thoi ABCD có.
AB = 40 cm; O là giao điểm của AC và BD
Xét \(\Delta DAB\) có: AB = AD = 40 cm; \( \Rightarrow \Delta DAB\) là tam giác đều suy ra
BD = AB = AD = 40cm \( \Rightarrow OB = \dfrac{{BD}}{2} = \dfrac{{40}}{2} = 20cm\)
Xét \(\Delta AOB\) vuông tại O có: \(O{A^2} + O{B^2} = A{B^2} \Rightarrow O{A^2} = A{B^2} - O{B^2} = {40^2} - {20^2} = 1200\)
\( \Rightarrow OA = \sqrt {1200} \Rightarrow AC = 2\sqrt {1200} \)
Diện tích của hình thoi ABCD là: \(S = \dfrac{1}{2}.AC.BD = \dfrac{1}{2}.40.2\sqrt {1200} = 1385,64(c{m^2})\)
Vậy diện tích của viên gạch đó là: \(1385,64(c{m^2})\)
Thể tích của lều trại đó là.
\(V = {3^3} + \dfrac{1}{3}{3^2}.1,8 = 32,4({m^3})\)
- Có AB // CD
=> \(\widehat {BAC} = \widehat {DCA}\) (2 góc so le trong)
\(\widehat {BDC} = \widehat {AB{\rm{D}}}\)(2 góc so le trong)
- Xét hai tam giác ABE và tam giác CDE, có \(\widehat {BAC} = \widehat {DCA};\widehat {B{\rm{D}}C} = \widehat {AB{\rm{D}}}\)
=> ΔABE ∽ ΔCDE
=> \(\frac{{C{\rm{D}}}}{{AB}} = \frac{{CE}}{{A{\rm{E}}}} = \frac{2}{3}\)
=> \(\frac{{CE}}{{A{\rm{E}}}} = \frac{2}{3}\)=> \(\frac{{CE}}{{CA}} = \frac{2}{5}\)
- Xét hai tam giác CEF và tam giác CAB có EF // AB
=> ΔCEF ∽ ΔCAB (theo định lý)
=> \(\frac{{F{\rm{E}}}}{{AB}} = \frac{{CE}}{{CA}} = \frac{2}{5}\)
=> \(\frac{{F{\rm{E}}}}{{AB}} = \frac{2}{5}\) => \(\frac{{F{\rm{E}}}}{3} = \frac{2}{5}\)=> \(F{\rm{E}} = 3.\frac{2}{5} = 1,2(m)\)
Vậy độ cao h là 1,2 m
Xét tứ giác ABCD có:
\(\begin{array}{l} \widehat A + \widehat B + \widehat C + \widehat D = {360^0}\\{85^0} + x + {65^0} + {75^0} = {360^0}\\x = {360^0} - {85^0} - {65^0} - {75^0} = {135^0}\end{array}\)
*) Áp dụng định lí Pythagore trong tam giác \(\Delta ABC\) vuông tại A có
\(A{C^2} = A{B^2} + B{C^2} = 5,{6^2} + 8,{4^2} = 101,92 \Rightarrow AC = \sqrt {101,92} \)
\(\Delta DEF\) vuông tại F có
\(D{F^2} = D{E^2} + E{F^2} = 16,{2^2} + 10,{8^2} = 379,08 \Rightarrow DF = \sqrt {379,08} \)
Kẻ \(AG \bot FG\)
Khi đó: \(FG = FE - GE = FE - AB = 10,8 - 5,6 = 5,2\)
Áp dụng định lí Pythagore trong \(\Delta AGF\) vuông tại G có
\(A{F^2} = A{G^2} + F{G^2} = 48,{6^2} + 5,{2^2} = 2389 \Rightarrow AF = \sqrt {2389} \)
Chu vi tứ giác ACDF là:
\(AC + CD + DF + AF = \sqrt {101,92} + \sqrt {379,08} + 24 + \sqrt {2389} \approx 102,4\)
Vậy chu vi của mặt cắt dọc phần nổi trên mặt nước của chiếc tàu thủy là khoảng 102,4m.