K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

*) Áp dụng định lí Pythagore trong tam giác \(\Delta ABC\) vuông tại A có

\(A{C^2} = A{B^2} + B{C^2} = 5,{6^2} + 8,{4^2} = 101,92 \Rightarrow AC = \sqrt {101,92} \)

\(\Delta DEF\) vuông tại F có

\(D{F^2} = D{E^2} + E{F^2} = 16,{2^2} + 10,{8^2} = 379,08 \Rightarrow DF = \sqrt {379,08} \)

Kẻ \(AG \bot FG\)

Khi đó: \(FG = FE - GE = FE - AB = 10,8 - 5,6 = 5,2\)

Áp dụng định lí Pythagore trong \(\Delta AGF\) vuông tại G có

\(A{F^2} = A{G^2} + F{G^2} = 48,{6^2} + 5,{2^2} = 2389 \Rightarrow AF = \sqrt {2389} \)

Chu vi tứ giác ACDF là:

\(AC + CD + DF + AF = \sqrt {101,92}  + \sqrt {379,08}  + 24 + \sqrt {2389}  \approx 102,4\)

Vậy chu vi của mặt cắt dọc phần nổi trên mặt nước của chiếc tàu thủy là khoảng 102,4m.

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

a, Do ACDE là hình thang cân nên

AC//DE suy ra AB//ED \( \Rightarrow {{\widehat B} _1} = {{\widehat E} _3},{{\widehat A} _1} = {{\widehat E} _1} = {60^0};{{\widehat C} _1} = {{\widehat D} _1} = {60^0}\)

Mà: AE//BD \( \Rightarrow {{\widehat B} _2} = {{\widehat E} _2}\)

Xét \(\Delta ABE\) và \(\Delta B{\rm{D}}E\) có: \({{\widehat B} _1} = {{\widehat E} _3}\) ; BE chung

\(\begin{array}{l}{{{\widehat B} }_2} = {{{\widehat E} }_2} \Rightarrow \Delta ABE = \Delta B{\rm{D}}E \Rightarrow A{\rm{E}} = B{\rm{D}} = 2m.\\AB = E{\rm{D}} = 2m\end{array}\)

Xét \(\Delta BC{\rm{D}}\) có \({{\widehat C} _1} = {60^0};B{\rm{D}} = C{\rm{D}} = 2m \Rightarrow \Delta BC{\rm{D}}\) đều.

Xét \(\Delta A{\rm{E}}B\) có \({{\widehat A} _1} = {60^0};AB = A{\rm{E}} = 2m \Rightarrow \Delta A{\rm{E}}B\) đều.

Vì: \(\Delta A{\rm{E}}B\) đều suy ra: BE = 2 m.

Xét \(\Delta BE{\rm{D}}\) có BD = BE = ED = 2m \( \Rightarrow \Delta BE{\rm{D}}\) đều.

b, Vì \(\Delta ABE,\Delta BC{\rm{D}}\) là các tam giác đều nên AB = BC = 2m.

Suy ra AC = AB + BC = 4m.

Do \(\Delta B{\rm{D}}C\) đều nên H là trung điểm của BC.

Suy ra HC = HB =\(\dfrac{{BC}}{2} = 1\)

Xét \(\Delta DHC\) vuông tại H ta có:

\(D{C^2} = D{H^2} + H{C^2}\) (theo định lý pythagore)

\(\begin{array}{l} \Rightarrow D{H^2} = D{C^2} - H{C^2} = {2^2} - {1^2} = 3\\ \Rightarrow DH = \sqrt 3 \end{array}\)

c, Diện tích hình thang cân AEDC là:

\({S_{A{\rm{ED}}C}} = \dfrac{1}{2}DH.(AC + E{\rm{D}}) = \dfrac{1}{2}\sqrt 3 (2 + 4) = 3\sqrt 3 (c{m^2})\)

Vậy diện tích mặt cắt phần chứa nước: \(3\sqrt 3 c{m^2}\)

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Gọi CB là chiều dài của mái che sân khấu. AB = 7- 6 = 1m, AC = 5m.

Từ C kẻ đường thẳng vuông góc với khung trước của sân khấu tại A. Ta có \( \Delta ABC \) vuông tại A.

Áp dụng định lí Pythagore trong tam giác vuông tại A. ta có:

\(C{B^2} = A{C^2} + A{B^2} = {1^2} + {5^2} = 26 \Rightarrow CB = \sqrt {26}  = 5,10(m)\)

HQ
Hà Quang Minh
Giáo viên
20 tháng 7 2023

Khoảng cách từ điểm xa nhất của bóng cây đến đỉnh cây bằng \(\sqrt{3^2+4^2}=5\left(m\right)\) (áp dụng định lý Py-ta-go).

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Thể tích của khối gỗ hình lập phương là: 

\( V_{lp} = 30^3 = 27000 (cm^3)\)

Thể tích vật thể có hình chóp tứ giác đều là:

\(V_{hc} = \frac{1}{3}.30^2.30 = 9000 (cm^3)\)

Thể tích phần khúc gỗ bị cắt bỏ là:

\( V = V_{lp} - V_{hc} = 27000 - 9000 = 18000 (cm^3)\)

Vậy thể tích của phần khúc gỗ đã bị cắt bỏ là \(18000 cm^3\)

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Hình chóp tứ giác đều S.ABCD có:

- Mặt đáy ABCD là hình vuông.

- Các mặt bên là SAB, SBC, SCD, SDA là những tam giác cân tại S.

- Các cạnh đáy AB, BC, CD, DA bằng nhau.

- Các cạnh bên SA, SB, SC, SD bằng nhau.

- S gọi là đỉnh của hình chóp đều S. ABCD

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Giả sử viên gạch dạng hình thoi là hình thoi ABCD có.

AB = 40 cm; O là giao điểm của AC và BD

Xét \(\Delta DAB\) có: AB = AD = 40 cm; \( \Rightarrow \Delta DAB\) là tam giác đều suy ra

BD = AB = AD = 40cm \( \Rightarrow OB = \dfrac{{BD}}{2} = \dfrac{{40}}{2} = 20cm\)

Xét \(\Delta AOB\) vuông tại O có: \(O{A^2} + O{B^2} = A{B^2} \Rightarrow O{A^2} = A{B^2} - O{B^2} = {40^2} - {20^2} = 1200\)

\( \Rightarrow OA = \sqrt {1200}  \Rightarrow AC = 2\sqrt {1200} \)

Diện tích của hình thoi ABCD là: \(S = \dfrac{1}{2}.AC.BD = \dfrac{1}{2}.40.2\sqrt {1200}  = 1385,64(c{m^2})\)

Vậy diện tích của viên gạch đó là: \(1385,64(c{m^2})\)

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Thể tích của lều trại đó là.

\(V = {3^3} + \dfrac{1}{3}{3^2}.1,8 = 32,4({m^3})\)

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

- Có AB // CD

=> \(\widehat {BAC} = \widehat {DCA}\) (2 góc so le trong)

     \(\widehat {BDC} = \widehat {AB{\rm{D}}}\)(2 góc so le trong)

- Xét hai tam giác ABE và tam giác CDE, có \(\widehat {BAC} = \widehat {DCA};\widehat {B{\rm{D}}C} = \widehat {AB{\rm{D}}}\)

=>  ΔABE ∽ ΔCDE

=> \(\frac{{C{\rm{D}}}}{{AB}} = \frac{{CE}}{{A{\rm{E}}}} = \frac{2}{3}\)

=> \(\frac{{CE}}{{A{\rm{E}}}} = \frac{2}{3}\)=> \(\frac{{CE}}{{CA}} = \frac{2}{5}\)

- Xét hai tam giác CEF và tam giác CAB có EF // AB

=> ΔCEF ∽ ΔCAB (theo định lý)

=> \(\frac{{F{\rm{E}}}}{{AB}} = \frac{{CE}}{{CA}} = \frac{2}{5}\)

=> \(\frac{{F{\rm{E}}}}{{AB}} = \frac{2}{5}\) => \(\frac{{F{\rm{E}}}}{3} = \frac{2}{5}\)=> \(F{\rm{E}} = 3.\frac{2}{5} = 1,2(m)\)

Vậy độ cao h là 1,2 m

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Xét tứ giác ABCD có:

\(\begin{array}{l} \widehat A  + \widehat  B + \widehat C  + \widehat  D  = {360^0}\\{85^0} + x + {65^0} + {75^0} = {360^0}\\x = {360^0} - {85^0} - {65^0} - {75^0} = {135^0}\end{array}\)