\(x^2\)>= x".
a) Lập mệnh đề phủ định của...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: Mệnh đề phủ định là \(\exists x\in R;x^2< x\)

b: Mệnh đề P sai vì với 0<x<1 thì \(x^2< x\)

I) trắc nghiệm câu 1 mệnh đề nào sau đây là mệnh đề sai? A. \(\forall n\in N:n\le2n\) B. \(\exists n\in N:N^2=n\) C. \(\forall x\in R:x^2>0\) D. \(\exists x\in R:X>X^2\) câu 2: cho nữa khoảng A=[0;3) và B=(b;b+4]. \(A\subset B\) nếu: A. -1<b\(\le\)0 B. -1\(\le\)b<0 C. -1\(\le\)b\(\le\)0 D. đáp án khác II)tự luận câu 1 a) cho mệnh đề:" nếu một số tự nhiên chia hết cho 6 thì nó chia hết cho 3". phát biểu mệnh đề dưới dạng...
Đọc tiếp

I) trắc nghiệm

câu 1 mệnh đề nào sau đây là mệnh đề sai?

A. \(\forall n\in N:n\le2n\) B. \(\exists n\in N:N^2=n\) C. \(\forall x\in R:x^2>0\) D. \(\exists x\in R:X>X^2\)

câu 2: cho nữa khoảng A=[0;3) và B=(b;b+4]. \(A\subset B\) nếu:

A. -1<b\(\le\)0 B. -1\(\le\)b<0 C. -1\(\le\)b\(\le\)0 D. đáp án khác

II)tự luận

câu 1

a) cho mệnh đề:" nếu một số tự nhiên chia hết cho 6 thì nó chia hết cho 3". phát biểu mệnh đề dưới dạng "điều kiện cần"

b) cho mệnh đề P:"\(\exists x\in Q:2x^2-5x+2=0\).Xét tính đúng sai của mệnh đề P và nêu mệnh đề phủ định của mệnh đề P

câu 2 cho hai tập hợp sau> Hãy liên kế các phần tử trong tập A và B

\(A=\left\{x\in N:\left|x\right|< 4\right\}\)

\(B=\left\{x\in Q:\left(4x^2-x\right)\left(x^2+3x-4\right)=0\right\}\)

câu 3 cho hai tập hợp \(A=\left\{x\in N:\left(x^2+2x\right)\left(x^2+x-2\right)\right\}=0\)và tập hợp \(B=\left\{-1;0;1\right\}\). Tìm các tập hợp \(A\cup B;A\cap B;\) A\B;B\A

câu 4 cho hai tập hợp \(A=\left\{x\in R/-2< x< 3\right\}\)\(B=(-\infty;2]\). Tìm tập hợp \(A\cup B;A\cap B;\)A\B;B\A và biểu diễn trên trục số

0
5 tháng 4 2017

a) Đúng. Mệnh đề phủ định: "1794 không chia hết cho 3".

b) Sai. "√2 không phải là một số hữu tỉ".

c) Đúng. "π không nhỏ hơn 3, 15". Dùng kí hiệu là: π ≥ 3,15 .

d) Sai. "|-125|>0".



16 tháng 5 2017

a) Mệnh đề đúng.

Phủ định là " \(\sqrt{3}+\sqrt{2}\ne\dfrac{1}{\sqrt{3}-\sqrt{2}}\), mệnh đề này sai

b) Mệnh đề sai, vì \(\left(\sqrt{2}-\sqrt{18}\right)^2=8\).

Phủ định là " \(\left(\sqrt{2}-\sqrt{18}\right)^2\le8\)", mệnh đề này đúng

c) Mệnh đề đúng, vì \(\left(\sqrt{3}+\sqrt{12}\right)^2=27\)

Phủ định là "\(\left(\sqrt{3}+\sqrt{12}\right)^2\) là một số vô tỉ", mệnh đề này sai

d) Mệnh đề sai

Phủ định là " \(x=2\) không là nghiệm của phương trình \(\dfrac{x^2-4}{x-2}=0\)", mệnh đề này đúng

AH
Akai Haruma
Giáo viên
29 tháng 8 2018

Bài 1:

a) \(\Delta=(1-\sqrt{3})^2-4(\sqrt{3}-2)=12-6\sqrt{3}>0\) nên pt có nghiệm.

Mệnh đề A sai.

b)

\(x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0, \forall x\in\mathbb{R}\)

\(\Rightarrow x^2\geq x-\frac{1}{4} , \forall x\in\mathbb{R}\). Mệnh đề B đúng.

c) Sai, $2017$ chỉ có ước là 1 và chính nó nên là số nguyên tố.

d) \(x^2+y^2-\frac{3}{2}y+\frac{3}{4}-xy=(x^2+\frac{y^2}{4}-xy)+\frac{3}{4}y^2-\frac{3}{2}y+\frac{3}{4}\)

\(=(x-\frac{y}{2})^2+\frac{3}{4}(y^2-2y+1)=(x-\frac{y}{2})^2+\frac{3}{4}(y-1)^2\)

\(\geq 0+\frac{3}{4}.0=0\) với mọi $x,y$

\(\Rightarrow x^2+y^2-\frac{3}{2}y+\frac{3}{4}\geq xy\)

Mệnh đề đúng.

29 tháng 8 2018

còn bài 2 giải sao thầy

Câu 3: 

a: Vì \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

nên P(x) luôn là mệnh đề đúng

b: \(\Leftrightarrow x< =\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)< =0\)

\(\Leftrightarrow\sqrt{x}-1< =0\)

=>0<=x<=1

1: Mệnh đề đúng

2: Mệnh đề đúng

3: Mệnh đề đúng

4: Mệnh đề đúng

5: Mệnh đề sai

1, Câu nào sau đây không phải là mệnh đề A. 3+2=7 B. \(^{x^2}\)+1<0 C. 2-\(\sqrt{5}\) <0 D. 4+x=3 2, Mệnh đề "∃x ∈ R, \(^{x^2}\)=3" khẳng định rằng: a. Bình phương của mỗi số thực bằng 3 B. Có ít nhất 1 số thực có bình phương bằng 3 C. Chỉ có 1 số thực có bình phương bằng 3 D. Nếu x là số thực thì \(x^2\)=3 3, Mệnh đề nào sau đây là mệnh đề đúng? A....
Đọc tiếp

1, Câu nào sau đây không phải là mệnh đề

A. 3+2=7 B. \(^{x^2}\)+1<0 C. 2-\(\sqrt{5}\) <0 D. 4+x=3

2, Mệnh đề "∃x ∈ R, \(^{x^2}\)=3" khẳng định rằng:

a. Bình phương của mỗi số thực bằng 3

B. Có ít nhất 1 số thực có bình phương bằng 3

C. Chỉ có 1 số thực có bình phương bằng 3

D. Nếu x là số thực thì \(x^2\)=3

3, Mệnh đề nào sau đây là mệnh đề đúng?

A. {a;b}⊂(a;b) B. {a}⊂[a;b] C. a∉[a;b) D.a∈(a;b]

4. Biết \(\sqrt{8}\)≃ 2,828427125. Giá trị gần đúng của \(\sqrt{8}\) chính xác đến hàng phần trăm là:

A. 2,829 B. 2,828 C. 2.82 D. 2,83

5, Cho mệnh đề A: "∀x ∈ R, \(x^2\)-x+7<0". Mệnh đề phủ định của A là:

A. ∀x ϵ R, \(x^2\)-x+7>0 B. ∀x ∈ R, \(x^2\)-x+7≥0

C. ∃x∈ R, \(x^2\)-x+7>0 D. ∃x ∈R, \(x^2\)-x+7≥0

6, Với giá trị nào của k thì hàm số y=(k-1)x+k-2 nghịch biến trên tập xác định của nó?

A. k<1 B. k>1 C. k<2 D. k>2

7, Cho △ABC đều, cạnh a. Mệnh đề nào sau đây đúng?

A. \(\overrightarrow{AB}=\overrightarrow{BC}=\overrightarrow{CA}\) B. \(\overrightarrow{CA}=-\overrightarrow{AB}\)

C. \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{BC}\right|=\left|\overrightarrow{CA}\right|=a\) D. \(\overrightarrow{CA}=-\overrightarrow{BC}\)

8, Trong hệ trục (O; \(\overrightarrow{i},\overrightarrow{j}\)), tọa độ của \(\overrightarrow{i}+\overrightarrow{j}\) là:

A. (0;1) B. (-1;1) C. (1;0) D. (1;1)

9, Tập xác định của hàm số \(y=\sqrt{2-x}+\sqrt{7+x}\) là:

A. (-7;2) B. [2;\(+\infty\)) C. [-7;2] D. R \ { -7;2}

10, Cho A(2;1), B(0;-3), C(3;1). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành là:

A. (5;5) B. (5;-2) C. (5;-4) D. (-1;-4)

11, Cho hàm số f(x) đồng biến trên khoảng (a;b), hàm số g(x) nghịch biến trên khoảng (a;b). Có thể kết luận gì về chiều biến thiên của hàm số y=f(x)-g(x) trên khoảng (a;b)?

A. Đồng biến B. Nghịch biến C. Không đổi D. Không kết luận được

12, Cho △ABC và một điểm M thỏa mãn điều kiện \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\). Trong các mệnh đề sau mệnh đề nào là mệnh đề sai?

A. MABC là hình bình hành B. \(\overrightarrow{AM}+\overrightarrow{AB}=\overrightarrow{AC}\) C. \(\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{BM}\) D. \(\overrightarrow{MA}=\overrightarrow{BC}\)

13, a) Viết tập hợp C gồm các nghiệm của phương trình \(x^2\)-5x+6=0 bằng cách chỉ ra các tính chất đặc trưng của nó. Liệt kê các phần tử của C.

b) Cho hai tập hợp A=(-1;3). B[1;4). Tìm A\(\cup\)B, A\(\cap\)B.

14, Cho hàm số \(y=mx^2+x-3\) (1)

a) Tìm các giá trị của m để đồ thị hàm số (1) là một Parabol

b) Tìm m để đồ thị hàm số (1) là một Parabol nhận đường thẳng d: x=1 làm trục đối xứng

15, a) Giả hệ phương trình \(\left\{{}\begin{matrix}2x+3y=5\\3x+2y=5\end{matrix}\right.\)

b) Giải phương trình \(\sqrt{x^2+3}=x+1\)

16, Cho hình bình hành ABCD

a) Chứng minh rằng \(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=2\overrightarrow{AC}\)

b) Xác định điểm M để \(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\)

17, Cho △ABC thỏa mãn \(2AB^2-3AC^2-5\overrightarrow{AB}.\overrightarrow{AC}=0.\) Các điểm M, N được xác định bởi \(\overrightarrow{MC}=-2\overrightarrow{MB}\), \(\overrightarrow{NB}=-2\overrightarrow{NA.}\) Chứng minh: AM vuông góc CN

0
1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\) 2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2 3. bất phương trình nào sau đây tương đương với...
Đọc tiếp

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số

A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\)

2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số

A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2

3. bất phương trình nào sau đây tương đương với bất phương trình x+5>0

A. (x-1)2 (x+5) > 0 B. x2 (x+5) >0

C. \(\sqrt{x+5}\left(x+5\right)\)> 0 D. \(\sqrt{x+5}\left(x-5\right)\)>0

4. bất phương trình ax+b > 0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a\ne0\\b=0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

5.bất phương trình ax+b>0 có tập nghiệm R khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

6.bất phương trình ax+b \(\le\)0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

7.tập nghiệm S của bất phương trình \(5x-1\ge\frac{2x}{5}+3\)

A. R B. (-∞; 2) C. (-\(\frac{5}{2}\); +∞) D. \([\frac{20}{23}\); +∞\()\)

MONG MỌI NGƯỜI GIẢI CHI TIẾT GIÚP EM Ạ TvT

0