K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2020

\(x^2+5y^2+2y=4xy+3\)

\(\Leftrightarrow x^2-4xy+5y^2+2y-3=0\) \(\left(a=1,b'=-2y,c=5y^2+2y-3\right)\)

Ta có: \(\Delta'=b'^2-ac=\left(-2y\right)^2-1\left(5y^2+2y-3\right)=4y^2-5y^2-2y+3=-y^2-2y+3\)

PT có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow-y^2-2y+3\ge0\Leftrightarrow y^2+2y-3\le0\Leftrightarrow\left(y+1\right)^2-4\le0\Leftrightarrow\left(y+1\right)^2\le4\)

\(\Leftrightarrow-2\le y+1\le2\Leftrightarrow-3\le y\le1\)

Từ đó, ta có: \(y_{min}=-3\), thay vào PT trên, ta có: \(\Delta'=0\)

PT trên có nghiệm kép: \(x=\frac{-b'}{a}=\frac{2y}{1}=2\cdot\left(-3\right)=-6\)

Vậy \(\left(-6;-3\right)\) là cặp số \(\left(x;y\right)\) sao cho y nhỏ nhất thoả mãn điều kiện trên.

\(x^2+5y^2+2y-4xy-3=0\)

=>\(\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)

=>\(\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Gợi ý tới đây bn giải tiếp đi

Mk chưa học lớp 9 nên ko giải đc

7 tháng 9 2017

- Mình cảm ơn nhiều yeu

1 tháng 2 2024

\(x^2+5y^2+2y+4xy-3=0\)
\(\Leftrightarrow\)\((x^2+4xy+4y^2)+(y^2+2y+1)=4\)
\(\Leftrightarrow\)\((x+2y)^2+(y+1)^2=4\)
\(\Leftrightarrow\)\((x+2y)^2=4-(y+1)^2\)
\(\Leftrightarrow\)\((x+2y)^2=(2-y-1)(2+y+1)\)
\(\Leftrightarrow\)\((x+2y)^2=(1-y)(3+y)\)
\(Vì \) \((x+2y)^2\geq0\)
\(\Rightarrow\)\((1-y)(3+y)\geq0\)
\(\Rightarrow\)\(\left[\begin{array}{} \begin{cases} 1-y\geq0\\ 3+y\geq0 \end{cases}\\ \begin{cases} 1-y\leq0\\ 3+y\leq0 \end{cases} \end{array} \right.\)
\(\Rightarrow\)\(\left[\begin{array}{} \begin{cases} y\leq1\\ y\geq-3 \end{cases}\\ \begin{cases} y\geq1\text{(Vô lí)}\\ y\leq-3\text{(Vô lí)} \end{cases} \end{array} \right.\)
\(\Rightarrow\)\(-3\leq y\leq1\)
\(\text{Mà y là số nhỏ nhất}\)
\(\Rightarrow\)\(y=-3\)
\(\Rightarrow\)\(x+2.(-3)=0\text{ (Vì }(x+2y)^2\geq0)\)
\(\Rightarrow\)\(x=6\)
\(\text{Vậy cặp số (x,y) thỏa mãn yêu cầu bài toán là: (6;-3)}\)
Nếu mình đúng cho mình xin 1 like nha

26 tháng 8 2016

Viết dưới dạng pt ẩn x:

\(x^2-2\left(y-3\right)x+\left(y^2-4y+5\right)=0\)

Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow\left(y-3\right)^2-\left(y^2-4y+5\right)\ge0\Leftrightarrow-2y+4\ge0\Leftrightarrow y\le2\)

Vậy Max y = 2, khi đó x = -1.

19 tháng 11 2016

Vì đây là toán casio nên được phép đùng máy tính để giải. Gợi ý bạn cách giải:

Ta tìm phần nguyên của \(\sqrt{260110}\)là 510. 

Ta tính 260110 - 5102 = 10

Vì y là số nguyên dương nhỏ nhất để cho 

260110 - 5y là 1 số chính phương nên

5y = 10  => y = 2

=> x = 8

20 tháng 11 2016

Bài này có dùng mode 7(TABLE) đc k nhỉ? alibaba nguyễn

2 tháng 2 2017

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

NV
18 tháng 4 2019

\(x^2-4xy+4y^2+y^2+2y+1-4=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Nếu \(y< -3\Rightarrow y+1< -2\Rightarrow\left(y+1\right)^2>4\Rightarrow VT>VP\) (ktm)

\(\Rightarrow y\ge-3\Rightarrow y_{min}=-3\)

\(\Rightarrow\left(x+6\right)^2+4=4\Rightarrow x=-6\)

Vậy \(\left\{{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)

20 tháng 4 2019

( x - 2y )2 + ( y + 1 )2 = 4 mà ( x - 2y ) 2 ≥ 0 ⇒ 4 - ( y + 1 ) 2 ≥ 0 ⇔ - ( y + 3 )( y - 1 ) ≥ 0 chia TH rồi ⇒ y ≥ -3 ymin = -3 ⇒ x = -6

7 tháng 12 2020

Đặt \(S=x+2y\Rightarrow x=S-2y\)

Xét 2 trường hợp :

TH1: \(x^2+y^2>1\)từ giả thiết \(\Rightarrow x^2+y^2\le x+y\Leftrightarrow\left(S-2y\right)^2+y^2\le S-y\Rightarrow5y^2-\left(4S-1\right)y+S^2-S\le0\left(1\right)\)

Coi (1) là bất pt bậc 2 đối với ẩn y 

\(\Rightarrow\Delta=\left(4S-1\right)^2-20\left(S^2-S\right)\ge0\Rightarrow4S^2-12S-1\le0\Rightarrow S\le\frac{3+\sqrt{10}}{2}\)

Đẳng thức xảy ra khi \(x=\frac{5+\sqrt{10}}{2}\) thỏa mãn \(x^2+y^2>1\)

Vậy \(S_{m\text{ax}}=\frac{3+\sqrt{10}}{2}\)

TH2: Nếu \(x^2+y^2< 1\Rightarrow x+y\le x^2+y^2\)\(\Rightarrow S=x+2y\le x^2+y^2+y< 1+1=2\Rightarrow S< \frac{3+\sqrt{10}}{2}\)

Vậy S lớn nhất là \(\frac{3+\sqrt{10}}{2}\)khi \(x=\frac{5+2\sqrt{10}}{10};y=\frac{5+2\sqrt{10}}{10}\)