Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^6-y^6\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
hk
tốt
Phân tích thành nhân tử:
(4x + 3y)2 + (6xy - 2)2
=\((16x^2+24xy+9y^2)+(36x^2y^2-24xy+4)\)
=\(16x^2+24xy+9y^2+36x^2y^2-24xy+4\)
=\(16x^2+9y^2+36x^2y^2+4\)
=\((4x)^2+(3y)^2+(6xy)^2+2^2\)
MÌNH CHỈ LÀM ĐC TỚI ĐÂY
\(x^2\left(x+1\right)-\left(x+1\right)\left(3x+1\right)+7x-x^2\)
\(=x^3+x^2-3x^2-4x-1+7x-x^2\)
\(=x^3-3x^2+3x-1\)
\(=\left(x-1\right)^3\)
a) 16(4x+5)2 - 25(2x+2)2
\(=\left[4\left(4x+5\right)\right]^2-\left[5\left(2x+2\right)\right]^2\)
\(=\left[4\left(4x+5\right)+5\left(2x+2\right)\right]\left[4\left(4x+5\right)-5\left(2x+2\right)\right]\)
\(=\left(16x+20+10x+10\right)\left(16x+20-10x-10\right)\)
\(=\left(26x+30\right)\left(6x+10\right)\)
\(b,\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-2y+1\right)\)
\(=\left(3x+2y+3\right)\left(-x-3y+5\right)\)
\(c,\left(x+1\right)^4-\left(x-1\right)^4\)
\(=\left(x+1\right)^{2^2}-\left(x-1\right)^{2^2}\)
\(=\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\)
\(=\left(x^2+2x+1+x^2-2x+1\right)\left[\left(x+1+x-1\right)\left(x+1-x+1\right)\right]\)
\(=\left(2x^2+2\right)2x.2\)
\(=4x.2\left(x^2+1\right)\)
\(=8x\left(x^2+1\right)\)
(x^2-x+2)^2+(x-2)^2
= [(x^2-x+2)+(x-2)]^2-2[(x^2-x+2)*(x-2)] (áp dụng (a^2+b^2)=(a+b)^2-2ab
=(x^2)^2- 2((x^3-3x^2+4x-4)
=x^4-2x^3+6x^2-8x+8
giờ phân tích đa thức
x^4-2x^3+6x^2+8x-8
=(x^4-2x^3+2x^2)+(4x^2-8x+8) (cái này làm bài tập nhiêu nhìn ra nhanh)
=[x^2(x^2-2x+2)]+4(x^2-2x+2) dẹp luôn
=(x^2-2x+2)(x^2+4)
\(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)
\(=\left[\left(x-2\right)\left(x+1\right)\right]^2+\left(x-2\right)^2\)
\(=\left(x-2\right)^2\left(x+1\right)^2+\left(x-2\right)^2\)
\(=\left(x-2\right)^2\left(x^2+2x+1\right)+\left(x-2\right)^2\)
\(=\left(x-2\right)^2\left(x^2+2x+2\right)\)
1) \(25x^4-10x^2y+y^2\)
\(\Leftrightarrow\left(5x^2\right)^2+2\cdot\left(5x^2\right)\cdot y+y^2\)
\(\Leftrightarrow\left(5x^2+y\right)^2\)
2) \(x^4+2x^3-4x-4\)
\(\Leftrightarrow\left(x^4-4\right)+\left(2x^3-4x\right)\Leftrightarrow\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+2+2x\right)\)
3) \(x^4+x^2+1\)
\(\Leftrightarrow x^4+x^2-x+x+1\)
\(\Leftrightarrow\left(x^4-x\right)+\left(x^2+x+1\right)\)
\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x+1\right)\)
4) \(x^3-5x^2-14x\)\(\Leftrightarrow x^3-7x^2+2x^2-14x\)
\(\Leftrightarrow x^2\left(x-7\right)+2x\left(x-7\right)\)\(\Leftrightarrow x\left(x+2\right)\left(x-7\right)\)
5) \(x^2yz+5xyz-14yz\)\(\Leftrightarrow yz\left(x^2+5x-14\right)\)
\(\Leftrightarrow yz\left(x^2+7x-2x-14\right)\)
\(\Leftrightarrow yz\left[x\left(x+7\right)-2\left(x+7\right)\right]\)
\(\Leftrightarrow yz\left(x+7\right)\left(x-2\right)\)
1+ x2 - y2 -2 =
=x2 -(y+1)2
= ( x+y+1)(x-y-1)